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1.1

Introduction

Entropy, originating from statistical physics is a fascinating and challenging
concept with many diverse definitions and various applications.

Considering all the diverse meanings, entropy can be used as a measure
for disorder in the range between total order (structured) and total disorder
(unstructured) [1, 2], as long as by "order" we understand that objects are seg-
regated by their properties or parameter values. States of lower entropy occur
when objects become organized, and ideally when everything is in complete
order the Entropy value is zero. These observations generated a colloquial
meaning of entropy [3].

Following the concept of the mathematical theory of communication by
Shannon & Weaver (1949) [4], entropy can be used as a measure for the un-
certainty in a data set. The application of entropy became popular as a mea-
sure for system complexity with the paper by Steven Pincus (1991) [5], who
described Approximate Entropy as a statistic quantifying regularity within a
wide variety of relatively short (greater than 100 points) and noisy time series
data. The development of this approach was initially motivated by data length
constraints, which is commonly encountered in typical biomedical signals in-
cluding: heart rate, electroencephalography (EEG), etc. but also in endocrine
hormone secretion data sets [6].

Hamilton et al. [7] were the first to apply the concept of entropy to biblio-
metrics to measure interdisciplinarity from diversity. While Hamilton et al.
work on citation data, a similar approach has been applied by Holzinger et
al. [8, 9] using enriched meta-data for a large research cluster.



2 1 Application of Graph-Entropy for Knowledge Discovery and Data Mining in Bibliometric Data

1.1.1
Challenges in bibliometric data sets, or why should we consider entropy mea-

sures?

The challenges in bibliometric data stem from various sources. First data in-
tegrity and and data completeness can never be assumed. Thus, bibliometrics
faces the following problems:

• Heterogeneous data sources: need for data integration and data fusion

• Complexity of the data: network-dimensionality

• Large data sets: manual handling of the data nearly impossible

• Noisy, uncertain, missing, dirty data: careful data pre-processing neces-
sary.

Beyond these data-integrity problems, problems of interpretation and appli-
cation are important. Meyer [10] lists six stylized facts that represent recurring
patterns in bibliometric data.

• Lotka’s Law [11] (Frequency of publication per author in a field)

• Matthew effect: Famous researchers receive a lot more citations than less
prominent researchers [12]

• Exponential growth of the number of scientists and journals [13]

• Invisible schools of specialties for every 100 scientists [13]

• Short-citation half life

• Bradfort’s law of scattering of information

These stylized facts lead to the consideration of analyzing publication data
using graph-based entropy analysis. Bibliometric data is similar to social net-
work data (e.g. small world phenomenon) and obeys above-mentioned laws.
In these type of network data graph-entropy may reveal potentials unavail-
able to standard social-network-analysis methodology.

Entropy measures have successfully been tested for analyzing short, sparse
and noisy time series data. However, they have not yet been applied to weakly
structured data in combination with techniques from computational topology.
Consequently, the inclusion of entropy measures for discovery of knowledge
in bibliometric data promises to be a big future research issue and there are a
lot of promising research routes.

Particularly, for data mining and knowledge discovery from noisy, uncer-
tain data, graph-entropy based methods may bring some benefits. However,
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in the application of entropy for such purposes are a lot of unsolved prob-
lems. In this chapter we will focus on the application of topological entropy
and open research issues involved.

Generally, Graph theory provides powerful tools to map data structures and
to find novel connections between single data objects [14, 15]. The inferred
graphs can be further analyzed by using graph-theoretical and statistical tech-
niques [16].

A mapping of aforementioned hidden schools as a conceptual graph and the
subsequent visual and graph-theoretical analysis may bring novel insights on
hidden patterns in the data, which exactly is the goal of knowledge discovery
[17]. Another benefit of the graph-based data structure is in the applicability
of methods from network topology and network analysis and data mining,
e.g. small-world phenomenon [18, 19], and cluster analysis [20, 21].

1.1.2
Structure of this chapter

This chapter is organized as follows: We have already seen a short intro-
duction into the problems of bibliometrics and how entropy could be used
to tackle these problems. Next we investigate the state of the art in graph-
theoretical approaches and how they are connected to text-mining (see section
1.2.1). This prepares us to understand how graph entropy could be used in
data-mining processes (see section 1.2.2). Next we show how different graphs
can be constructed from bibliometric data and what research problems can be
addressed by each of those (see section 1.2.3). We then focus on co-authorship
graphs in order to identify collaboration styles using graph entropy (see sec-
tion 1.3). For this purpose we selected a subgroup of the DBLP database and
prepared it for our analysis (see section 1.4). The results (see section 1.5) show
how two entropy measures describe our dataset. From these results we con-
clude our discussion of the results and consider different extensions on how
to improve our approach (see section 1.6).

1.2

State of the Art

Many problems in the real-world can be described as relational structures.
Graph-Theory [22] provides powerful tools to map such data structures and
to find novel connections between single data objects [14, 15]. The inferred
graphs can be further analyzed by using graph-theoretical and statistical tech-
niques [16]. A mapping of already existing and in medical practice approved
knowledge spaces as a conceptual graph and the subsequent visual and graph-
theoretical analysis may bring novel insights on hidden patterns in the data,
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which exactly is the goal of knowledge discovery [17]. Another benefit of
a graph-based data structure is in the applicability of methods from net-
work topology and network analysis and data mining, e.g. small-world phe-
nomenon [18, 19], and cluster analysis [20, 21].

The first question is “How to get a graph?”, or simpler “How to get point
sets?”, because point cloud data sets (PCD) are used as primitives for such
approaches. Apart from “naturally available” point clouds (e.g. from laser
scanners, or resulting from protein structures or protein interaction networks
[23], or also text can be mapped into a set of points (vectors) in Rn.), the answer
to this question is not trivial; for some solutions see [24].

1.2.1
Graphs and Text Mining

Graph-theoretical approaches for Text Mining emerged from the combina-
tion of the fields of data mining and topology, especially graph theory [25].
Graphs are intuitively more informative as example words/phrase represen-
tations [26]. Moreover graphs are the best studied data structure in computer
science and mathematics and they also have a strong relation with logical
languages [25]. Its structure of data is suitable for various fields like biol-
ogy, chemistry, material science and communication networking [25]. Fur-
thermore, graphs are often used for representing text information in natural
language processing [26]. Dependency graphs have been proposed as a repre-
sentation of syntactic relations between lexical constituents of a sentence. This
structure is argued to more closely capture the underlying semantic relation-
ships, such as subject or object of a verb, among those constituents [27].

The beginning of graph-theoretical approaches in the field of data mining
was in the middle of the 1990’s [25] and there are some pioneering studies
such as [28–30]. According to [25] there are five theoretical bases of graph-
based data mining approaches such as (1) subgraph categories, (2) subgraph
isomorphism, (3) graph invariants, (4) mining measures and (5) solution meth-
ods. Furthermore, there are five groups of different graph-theoretical ap-
proaches for data mining such as (1) greedy search based approach, (2) in-
ductive logic programming based approach, (3) inductive database based ap-
proach, (4) mathematical graph theory based approach and (5) kernel function
based approach [25].

There remain many unsolved questions about the graph characteristics and
the isomorphism complexity [25]. Moreover the main disadvantage of graph-
theoretical text mining is the computational complexity of the graph represen-
tation. The goal of future research in the field of graph-theoretical approaches
for text mining is to develop efficient graph mining algorithms which imple-
ment effective search strategies and data structures [26].
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Graph-based approaches in text mining have many applications from bi-
ology and chemistry to internet applications [31]. According to Morales et
al [32] graph-based text mining approach combined with an ontology (e.g.
the Unified Medical Language System - UMLS) can lead to better automatic
summarization results. In [33] a graph-based data mining approach was used
to systematically identify frequent co-expression gene clusters. A graph-based
approach was used to disambiguate word sense in biomedical documents in
Agirre et al. [34]. Liu [35] proposed a supervised learning method for ex-
traction of biomedical events and relations, based directly on subgraph iso-
morphism of syntactic dependency graphs. The method extended earlier
work [36] that required sentence subgraphs to exactly match a training ex-
ample, and introduced a strategy to enable approximate subgraph matching.
These method have resulted in high-precision extraction of biomedical events
from the literature.

While graph-based approaches have the disadvantage of being computation-
ally expensive, they have the following advantages:

• It offers a far more expressive document encoding than other meth-
ods [26].

• Data which is graph structured widely occurs in different fields such as
bibliometrics, biology, chemistry, material science and communication
networking [25].

A good example for graph learning has been presented by Liu et al. (2009)
[37]: they proposed a graph learning framework for image annotation, where
at first the image-based graph learning is performed to obtain candidate an-
notations for each image and then word-based graph learning is developed
to refine the relationships between images and words to get final annotations
for each image. To enrich the representation of the word-based graph, they
designed two types of word correlations based on web search results besides
the word co-occurrence in the training set. Generally, image annotation meth-
ods aim to learn the semantics of un-tagged images from already annotated
images to ensure an efficient image retrieval.

1.2.2
Graph-Entropy for Data Mining and Knowledge Discovery

Rashevsky [38], Trucco [39], and Mowshowitz [40], were amongst the first
researchers to define and investigate the entropy of graphs.
Graph Entropy was described by [41] to measure structural information con-
tent of graphs, and a different definition, more focused on problems in infor-
mation and coding theory, was introduced by Körner in [42]. Graph entropy
is often used for the characterization of the structure of graph-based systems,
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e.g. in mathematical biochemistry, but also for any complex network [43]. In
these applications the entropy of a graph is interpreted as its structural infor-
mation content and serves as a complexity measure, and such a measure is
associated with an equivalence relation defined on a finite graph; by appli-
cation of Shannon’s Eq. 2.4 in [44] with the probability distribution we get a
numerical value that serves as an index of the structural feature captured by
the equivalence relation [44].

The open source graph visualization tool Gephi allows for several different
graph analyses of network graphs. Traditionally these are used with social
network graphs (i.e. co-authorship graphs). Interpretation of graph statistics
must be reevaluated for mixed node graphs. Graph statistics that are of inter-
est in regard to publication networks are:

• Network entropies have been developed to determine the structural in-
formation content of a graph [45], [44]. We have to mention that the
term network entropy cannot be uniquely defined. A reason for this is
that by using Shannon’s entropy [46], [41], [47] the probability distribu-
tion cannot be assigned to a graph uniquely. In the scientific literature,
two major classes have been reported [45], [48], [49]:

1. Information-theoretic measures for graphs which are based on a
graph invariant X (e.g., vertex degrees, distances etc.) and an
equivalence criterion [41]. By starting from an arbitrary graph in-
variant X of a given graph and an equivalence criterion, we derive
a partitioning. Thus, one can further derive a probability distribu-
tion. An example thereof is to partition the vertex degrees (abbre-
viated as d(v)) of a graph into equivalence classes, i.e., those classes
only contain vertices with degree i = 1, 2, ..., max d(v), see e.g. [50].

2. Instead of determining partitions of elements based on a given in-
variant, Dehmer [48] developed an approach which is based on us-
ing so called information functionals. An information functional f
is a mapping which maps sets of vertices to the positive reals. The
main difference to partition-based measures (see previous item) is
that we assign probability values to every individual vertex of a
graph (and not to a partition), i.e.,

p f (vi) :=
f (vi)

Â|V|
j=1 f (vj)

(1.1)

As the probability values depend on the functional f , we infer a
family of graph entropy measures

I f (G) := �
|V|

Â
i=1

p f (vi) log p f (vi) (1.2)
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|V| is the size of the vertex set of G. Those measures have been
extensively discussed in [50].

Evidently, the both graph measures can be interpreted as graph complex-
ity measures [50]. The latter outperform partition-based entropy measures
because they integrate features from every vertex instead of subgraphs. This
is important because when we look at bibliometric data (e.g. co-authorship
graphs) often differ to small degrees. Measuring these with partition-based
entropy could lead to highly similar data for dissimilar graph data.

1.2.3
Graphs from Bibliometric Data

Graph entropy in bibliometric data can be applied to various forms of data.
Depending on how the meta-data is interpreted different types of graphs can
be constructed [51]. The question that we can apply differ depending on the
type of graph. One must ask: What does graph entropy mean when biblio-
metric graph is analyzed. For this purpose we first list various types of biblio-
metric graph representations.

• Collaboration-based graphs / Co-Authorship Graphs: In a co-authorship
graph vertices represent unique authors that have published articles.
Edges are inserted by connecting vertices that have published articles
as co-authors. Edge weights can be mapped to the frequency of collab-
oration. A key benefit of this type of analysis is that it can be applied
using meta-data alone that is publicly available. Authorship graphs are
undirected graphs. Typical analyses are conducted to understand pat-
terns of collaboration, interdisciplinarity, and the evolution of scientific
subjects [52].

– Author level: When edges represent individual authors, we speak
about author level co-authorship graphs.

– Institutional level: When edges represent institutions, we speak
about institutional level co-authorship graphs.

• Citation-based graphs: Mapping citations from articles requires more
data than often available [53]. As vertices we use articles that are joined
by citation edges. Obviously, these graphs can only be constructed when
citation data is available. A citation-based graph is a directed graph.
No weights are assigned to edges. In these graphs analyses can be con-
ducted in various forms. Typical analyses are co-citation analysis (i.e.
what documents get cited together [54]), centrality analyses (e.g. what
documents form the core of knowledge), and bibliographic coupling [51]
(i.e. what documents cite similar documents). These measures are also
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often used to identify scientific subject or the degree of interdisciplinar-
ity of a journal.

– Article level: When nodes represent individual articles, we speak
about article level citation graphs.

– Journal level: When nodes represent journals, we speak about jour-
nal level citation graphs.

– Subject level: When nodes represent scientific subjects, we speak
about subject level citation graphs.

• Content/Topic-based graphs: When full text or abstract data is avail-
able content of articles may also be used in a graph-based represen-
tation. Using different text-mining approaches topics may be identi-
fied. These can be used to map various information. Often topic-based
graphs are multimodal representing relationships between different en-
tities. These graphs are often used for recommendation purposes or to
identify trends.

– Author-Topic mapping: When nodes represent authors and topics,
analyses can be performed to understand how authors contribute
to different topics.

– Journal-Topic mapping: When nodes represent journals and topics,
we can analyze how topics are formed and which journals are the
main contributors to a topic how they.

– Article-Topic mapping: When nodes represent articles and topics, we
can analyze which articles (and thus which authors) have formed a
topic and how it develops over time.

• Other/combined graphs Using the aforementioned graphs we can factor
in various forms of metadata (e.g. time-series data, citation data, etc.) to
combine different approaches. For example we can use the publication
date and citation data to identify how certain groups of authors have
formed topics and where central ideas come from.

1.3

Identifying Collaboration-Styles Using Graph Entropy from Bibliometric Data

Bibliometrics or Scientometrics is the discipline of trying to discover knowl-
edge from scientific publication in order to understand science, technology
and innovation. Various analyses have been conducted in scientometrics us-
ing co-authorship networks as reviewed by Kumar [52]. Collaboration styles
have been investigated by Hou et al. [55] identifying patterns of social prox-
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imity for the field of scientometrics itself. Topics were identified using co-
occurrence analysis and collaborative fields were identified.

Applying graph entropy to publication data could be used to determine
how scientific collaboration differs in various sub-fields. By analyzing co-
authorship graphs in sub-communities, we could be able to identify structural
differences in and between groups.

1.4

Method and Materials

In our example we want to address the most simple form of bibliometric graph
data. We use this type of data to test how graph entropy works in our scenario
and combine it with other methods (i.e. community detection). The aim of this
approach is to identify how different communities (i.e. group of authors that
co-author articles) differ in their topology.

For this purpose we evaluate the DBLP database of computer science. The
XML database contains meta-data on publications in the field of computer
science and covers over 3 mio. articles (as of Sep. 2015). In order to limit com-
putation times, we focus on data only from the largest journals that deal with
graph theory (see Tab. 1.1).

Because we are interested in the structure of a collaboration graph, we fo-
cus on measures that account for symmetry in the graph. Topological infor-
mation content is used to measure local symmetry within communities and
parametric graph entropy is used to measure the overall symmetry of a sub-
community. By reviewing the influence of both we see how symmetry plays
out from a detail- and meta-perspective.

Journal Name Articles

Graphs and Combinatorics 710
SIAM J. Discrete Math. 644
Ars Comb. 641
IEEE Transactions on Information Theory 489
Discrete Applied Mathematics 480
Electronic Notes in Discrete Mathematics 432
J. Comb. Theory, Ser. B 412
SIAM J. Comput. 402
Combinatorics, Probability & Computing 327
IEEE Trans. Knowl. Data Eng. 277

Tab. 1.1 Largest 10 Journals from DBLP and their article count

For all years about 4,811 publications were present. By extracting author
names and constructing a co-authorship graph, we get a network of 6,081 ver-
tices (i.e. authors) and 8,760 edges (i.e. collaborations). No correction for mul-
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tiple author-names were performed. Duplicate entries with different spellings
are considered as two distinct entries. We could remove duplicates by apply-
ing similarity measures (e.g. Levensthein distance, etc.), but for our approach
this is not necessary. For community-detection we ran the Louvain algorithm
supplied by the igraph R package. The algorithm returned 1347 distinct com-
munities and a modularity of 0.93.

After sorting communities we measure topological information content to
determine the characteristics of collaboration in these sub-communities. We
evaluated the following graph entropies:

1. A partition-based graph entropy measure called topological information
content based on vertex orbits due to [41].

2. Parametric graph entropies based on a special information functional f
due to Dehmer [48]. The information functional we used is

f (vi) :=
r(G)

Â
k=1

ck|Sk(vi, G)|, with ck > 0 (1.3)

summing the product of both the size of the k-sphere (i.e. the amount of
nodes in G with a distance of k from vi given as |Sk(vi, G)|) and arbitrary
positive correction coefficients ck for all possible k from 1 to the diameter
of the graph G. The resulting graph entropies have been defined by

I f := �
|V|

Â
i=1

p f (vi) log p f (vi) (1.4)

1.5

Results

The largest ten communities range from a size of 225 to 115. In order to iden-
tify communities we measure Eigenvector-Centrality for the identified sub-
communities and identify the top-3 most central authors (see 1.2). We then
determine our two entropy measures for the given sub-communities to char-
acterize the collaboration properties within these communities.

We can note that the used graph entropies evaluate the complexity of our
communities differently (see Fig. 1.3 and Fig. 1.4). Both seem to plot loga-
rithmic curves but show different dispersion from an ideal curve. The distri-
bution plot also shows typical properties of bibliometric data. Both entropies
follow a power law distribution (see Fig. 1.3). The topological information
content seems to scatter more strongly than parametric graph entropy. On the
other hand the information functional based graph entropy seems to follow
the steps of the community-size more precisely.
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ID Size Most-Central 3 Authors Imowsh Idehm

1 225 Noga Alon; Alan M. Frieze; Vojtech Rödl 7.3 7.804
2 217 Douglas B. West; Ronald J. Gould; Alexandr V. Kos-

tochka
7.21 7.751

3 172 Daniel Král; Ken-ichi Kawarabayashi; Bernard
Lidický

6.97 7.414

4 166 Muriel Médard; Tracey Ho; Michelle Effros 6.849 7.363
5 161 Hajo Broersma; Zsolt Tuza; Andreas Brandstädt 6.889 7.317
6 141 Xueliang Li; Cun-Quan Zhang; Xiaoyan Zhang 6.563 7.153
7 132 Hong-Jian Lai; Guizhen Liu; Hao Li 6.44 7.031
8 127 Syed Ali Jafar; Abbas El Gamal; Massimo

Franceschetti
6.385 6.98

9 127 Michael A. Henning; Ping Zhang; Odile Favaron 6.561 6.975
10 115 Jayme Luiz Szwarcfiter; Celina M. Herrera de

Figueiredo; Dominique de Werra
6.232 6.838

Tab. 1.2 Largest 10 Identified Communities

Tab. 1.3 Toplogical information content and parametric graph entropy distributions.

Now we will explore this problem with an example, namely by considering
the measures Imowsh < Idehm for the largest sub-communities (i.e. ID = 1).
In this context, the inequality Imowsh < Idehm can be understood by the fact
those entropies have been defined on different concepts.

As mentioned, Imowsh is based upon the automorphism group of a graph
and, therefore, can be interpreted as a measure of symmetry. This measure
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Tab. 1.4 Both entropies plotted over community size.

becomes small when all vertices are located in only one orbit. By contrast,
the measure is maximal (= log2(|V|)) if the input graph equals the so-called
identity graph; that means all vertex orbits are singleton sets. In our case, we
obtain Imowsh = 7.3 < log2(225) = 7.814 and conclude that according to the
definition of Imowsh, the community is rather symmetrical.

Instead, the entropy Idehm characterizes the diversity of the vertices in terms
of their neighborhood, see [45]. The higher the value of Idehm, the less topo-
logically different vertices are in the graph and, finally, the higher is the inner
symmetry of our sub-community. Again, maximum entropy for our network
equals log2(225) = 7.814. Based on the fact that for the complete graph K,
Idehm(Kn) = log(n) holds, we conclude from the result Idehm = 7.804 that the
community network is highly symmetrical and connected and could theoret-
ically be obtained by deleting edges from K225 (see also Fig. 1.5). A similar
conclusion can be derived from looking at Imowsh = 7.3.

In comparison the values of community ID = 30 differs regarding these
values. Its topological information content is Imowsh = 2.355, while its para-
metric graph entropy is Idehm = 3.571. The theoretical maximum for this
graph is log2(12) = 3.58 — very near to the parametric graph entropy. When
looking at the resulting network plot (see Fig. 1.6) we can see that the graph
is symmetrical on a higher level. We have three sub-communities, all held to-
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Tab. 1.5 Plot of the largest community in the co-authorship graph.

gether by the central author "Imrich Vrto". The graph is thus less symmetrical
on a higher order, but the inner symmetry is still high.

1.6

Discussion and Future Outlook

Different entropy measure deliver different results because they are based on
different graph properties. When using the aforementioned entropy measures
in a co-authorship graph measures of symmetry Idehm (based on vertex neigh-
borhood diversity) or Imowsh (based on the graph automorphism) deliver dif-
ferent measures of entropy. Interpreted we could say, that authors can be sim-
ilar in regard to their neighborhoods (i.e. authors show similar publication
patterns) while the whole graph shows low measures of automorphism-based
symmetry to itself. This could mean authors can not be exchanged for one an-
other without changing basic properties of the graph. On the other hand when
Imowsh is significantly lower than Idehm we could argue that symmetry differs
on different levels of the graph. Interpreting these differences could be more
interesting than looking at the individual symmetry measures themselves.

Since publications and thus collaboration are time related, one could extend
this approach to Markov-networks. Applying various graph-entropy mea-
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Tab. 1.6 Plot of the 30th community in the co-authorship graph with author names.

sures in this context could reveal changes in collaboration and indicate a shift
in topics for authors or subgroups of authors.

1.6.1
Open problems

From our work we must say, that deriving co-authorship communities based
on Louvain-clustering naturally leads to specific structures in community
building. The created communities are probabilistic estimates of real com-
munities. The investigated communities tend to show high similarity for the
parametric graph entropy. This is expected, as they are constructed by remov-
ing edges from the full graph that is separated into sub-graphs that should
be coherent clusters. Our analysis shows that we can derive properties from
co-authorship graphs that represent collaboration behavior, but our method is
biased. It is likely to fail with small collaboration groups, as their entropy can
not take up that many different values. One approach to tackle this problem
could be to used bimodal graphs that include publication nodes. This how-
ever, leads to drastically larger graphs, which in turn require more processing
power.

For further investigations one could use empirical data or integrate text-
mining approaches to identify more accurate clusters. Using non-exclusive
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clustering methods could also improve on our results. Additional measures
of entropy should also be used to evaluate found communities.

1.6.2
A Polite Warning

Bibliometric analyses tend be used in evaluations of scientific success quite
often. Sadly, they are often used with only introductory knowledge in biblio-
metric evaluation. The purpose of this chapter is not to propose a method for
evaluating research performance, but to provide new methods for the anal-
ysis of collaboration. Major deficits in this approach for performance mea-
surement stem from typical bibliometric limitations (e.g. database coverage,
author identification, etc.). Using these methods for performance evaluations
without considering these limitations reveals a lack of understanding of bib-
liometrics and should therefore be left to bibliometric experts.

Bibliography

1 Holzinger, A. In DATA 2012, INSTICC,
Rome, Italy, 2012, pp. 9–20

2 Holzinger, A., Stocker, C., et al. In Commu-
nications in Computer and Information Science
CCIS 455, (eds. M. S. Obaidat, J. Filipe),
Springer, Berlin Heidelberg, 2014, pp. 3–18

3 Downarowicz, T. Entropy in dynamical sys-
tems, vol. 18, Cambridge University Press,
Cambridge, 2011

4 Shannon, C. E., Weaver, W. The Mathemat-
ical Theory of Communication, University of
Illinois Press, Urbana (IL), 1949

5 Pincus, S. M. Proceedings of the National
Academy of Sciences 88 (1991), pp. 2297

6 Pincus, S. Chaos: An Interdisciplinary Journal
of Nonlinear Science 5 (1995), pp. 110

7 Hamilton, K. S., Narin, F., & Olivastro, D.
(2005). Using bibliometrics to measure
multidisciplinarity. Westmont, NJ

8 Holzinger, A., Ofner, B., Stocker, C., Calero
Valdez, A., Schaar, A. K., Ziefle, M., &
Dehmer, M. (2013). On graph entropy
measures for knowledge discovery from
publication network data. In Availabil-
ity, reliability, and security in information
systems and HCI (pp. 354-362). Springer
Berlin Heidelberg.

9 Calero Valdez, A., Schaar, A. K., Ziefle,
M., Holzinger, A., Jeschke, S., & Brecher,

C. (2014). Using mixed node publication
network graphs for analyzing success in
interdisciplinary teams. In Automation,
Communication and Cybernetics in Science
and Engineering 2013/2014 (pp. 737-749).
Springer International Publishing.

10 Meyer, M. (2011) In Journal of Artificial
Societies and Social Simulation, 14(4), 2011

11 Lotka, A. J. (1926). The frequency distri-
bution of scientific productivity. Journal
of Washington Academy Sciences, Vol. 16,
No. 12, pp. 317-324.

12 Merton, R. K. (1968). The Matthew effect
in science. Science, Vol. 159, No. 3810, pp.
56-63.

13 De Solla Price, D. J. (1963). Little sci-
ence, big science... and beyond. New York:
Columbia University Press.

14 Strogatz, S. Nature 410 (2001), pp. 268
15 Dorogovtsev, S., Mendes, J. Evolution of

networks: From biological nets to the Internet
and WWW, Oxford University Press, 2003

16 Dehmer, M., Mowshowitz, A. Information
Sciences 181 (2011), pp. 57

17 Holzinger, A., Dehmer, M., et al. BMC
Bioinformatics 15 (2014), p. I1

18 Barabasi, A. L., Albert, R. Science 286
(1999), pp. 509

19 Kleinberg, J. Nature 406 (2000), pp. 845



16 Bibliography

20 Koontz, W., Narendra, P., et al. IEEE Trans-
actions on Computers 100 (1976), pp. 936

21 Wittkop, T., Emig, D., et al. Nature protocols
6 (2011), pp. 285

22 Harary, F. Structural models. An introduction
to the theory of directed graphs, Wiley, 1965

23 Canutescu, A. A., Shelenkov, A. A., et al.
Protein science 12 (2003), pp. 2001

24 Holzinger, A., Malle, B., et al. In Interac-
tive Knowledge Discovery and Data Mining:
State-of-the-Art and Future Challenges in
Biomedical Informatics, Springer LNCS 8401,
(eds. A. Holzinger, I. Jurisica), Springer,
Berlin, Heidelberg, 2014, pp. 57–80

25 Washio, T., Motoda, H. ACM SIGKDD
Explorations Newsletter 5 (2003), p. 59

26 Jiang, C., Coenen, F., et al. Knowledge-Based
Systems 23 (2010), pp. 302

27 Melcuk, I. Dependency Syntax: Theory
and Practice, State University of New York
Press, 1988

28 Cook, D. J., Holder, L. B. J. Artif. Int. Res. 1
(1994), pp. 231

29 Yoshida, K., Motoda, H., et al. Applied
Intelligence 4 (1994), pp. 297

30 Dehaspe, L., Toivonen, H. Data Mining and
Knowledge Discovery 3 (1999), pp. 7

31 Fischer, I., Meinl, T. In SMC (5), IEEE2004,
pp. 4578–4582

32 Morales, L. P., Esteban, A. D., et al. In Pro-
ceedings of the 3rd Textgraphs Workshop on
Graph-Based Algorithms for Natural Language
Processing. TextGraphs-3, Association for
Computational Linguistics, Stroudsburg,
PA, USA, 2008, pp. 53–56

33 Yan, X., Mehan, M. R., et al. Bioinformatics
23 (2007), pp. i577

34 Agirre, E., Soroa, A., et al. Bioinformatics 26
(2010), pp. 2889

35 Liu, H., Hunter, L., et al. PLoS ONE, 8
36 Liu, H., Komandur, R., et al. In Proceedings

of BioNLP Shared Task 2011 Workshop, As-
sociation for Computational Linguistics,
2011, pp. 164–172

37 Liu, J., Li, M., et al. Pattern Recognition 42
(2009), pp. 218

38 Rashevsky, N. The bulletin of mathematical
biophysics 17 (1955), pp. 229

39 Trucco, E. Bulletin of Mathematical Biology 18
(1956), pp. 129

40 Mowshowitz, A. The bulletin of mathematical
biophysics 30 (1968), pp. 533

41 Mowshowitz, A. The bulletin of mathematical
biophysics 30 (1968), pp. 175

42 Körner, J. In 6th Prague Conference on Infor-
mation Theory. 1973, pp. 411–425

43 Holzinger, A., Ofner, B., et al. In Multidis-
ciplinary Research and Practice for Information
Systems, Springer LNCS 8127, (Eds. A. Cuz-
zocrea, C. Kittl, D. E. Simos, E. Weippl,
L. Xu), Springer, Heidelberg, Berlin, 2013,
pp. 354–362

44 Dehmer, M. Symmetry 3 (2011), pp. 767

45 Dehmer, M., Varmuza, K., et al. Journal of
chemical information and modeling 49 (2009),
pp. 1655

46 Shannon, C. E. Bell system technical journal
27 1948

47 Holzinger, A., Stocker, C., et al. Entropy 14
(2012), pp. 2324

48 Dehmer, M. Appl. Math. Comput. 201
(2008), pp. 82

49 Mowshowitz, A., Dehmer, M. Entropy 14
(2012), pp. 559

50 Dehmer, M., Mowshowitz, A. Inf. Sci. 181
(2011), pp. 57

51 Kessler, M. M. (1963). Bibliographic cou-
pling between scientific papers. American
documentation, 14(1), 10-25.

52 Kumar, S. Aslib Journal of Information Man-
agement 67 (2015) pp. 55

53 Culnan, M. J. (1987). Mapping the in-
tellectual structure of MIS, 1980-1985: a
co-citation analysis. Mis Quarterly, 341-353.

54 Small, H. (1973). CoâĂŘcitation in the
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