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Abstract:Modeling infectiousdiseaseshasbeen shown tobeof great importanceandutility during theongoing
COVID-19 pandemic. From today’s globalized information landscape, however, a plethora of new factors arise
that havenot been covered inpreviousmodels. In this paper, wepresent anagent-basedmodel that reflects the
complex interplay between the spread of a pathogen and individual protective behaviors under the influence
of media messaging. We use the Rescorla-Wagner model of associative learning for the growth and extinction
of fear, a factor that has been proposed as amajor contributor in the determination of protective behavior. The
model space, as well as heterogeneous social structures among the agents, are created from empirical data.
We incorporate factors like age, gender, wealth, and attitudes towards public health institutions.

The model is able to reproduce the empirical trends of fear and protective behavior in Germany but struggles
to simulate the accurate scale of disease spread. The decline of fear seems to promote a second wave of dis-
ease and the model suggests that individual protective behavior has a significant impact on the outcome of
the epidemic. The influence of media in the form of messages promoting protective behavior is negligible in
the model. Further research regarding factors influencing long-term protective behavior is recommended to
improve communication andmitigation strategies.

Keywords: Covid-19, Epidemic Models, Pandemic Mitigation, Rescorla-Wagner Model, Health Protective Be-
havior, Media E�ects

Introduction

1.1 Understanding the pandemic outbreak of novel viruses has for long periods of time not been the focus of epi-
demiological research. Mostmodels of the spread of diseasewere established in the pre-digital media era—SIR
was developed in the 1920ies—and thus focused onmedical outcomes, such as status of infection or infectabil-
ity, as well as spatial and demographic distributions of population. Accordingly, the susceptible population is
o�en assumed to be an amorphous mass that does not show high levels of individual attitudes, emotions, or
actions.

1.2 The COVID-19 pandemic has again shi�ed research attention towards global pandemic models. Key contribu-
tions have been achieved regarding estimation of disease parameters (e.g., by Dehning et al. 2020), improve-
mentof compartmentalization, anddiseasemodel complexity. Typicalmodels utilize compartmentalizedmod-
els based on di�erential equations, focusing on large scale simulations. They investigate e�ects such as non-
pharmaceutical interventions (NPI, e.g., lockdownmeasures, curfews, etc.), disease variations (e.g., variants of
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concerns, mutations), as well as pharmaceutical interventions (e.g., vaccinations e�orts and strategies). Tar-
get outcomes are typically the amount of lives lost, hospitalization rates, but also the impact on economical,
societal, as well as educational metrics.

1.3 Alternative approaches that use agent-basedmodeling allowmodeling the heterogeneity of the simulated en-
tities, thus enabling potentially more realistic models of individual micro-scale behavior. Heterogeneity comes
with a cost, though. As individual agents have to be drawn from artificial populations, e�ects of insu�icient
data or di�erences in the randomness in initialization can overpower modeling e�ects and e�ectively yield
more noise than data. When it comes to modeling pandemics, social and psychological factors have largely
been ignored (Lorig et al. 2021). Similarly, the impact of media and social media on epidemics has not yet been
investigated thoroughly.

Our contribution

1.4 In this article, we present a Covid-19 pandemic model that includes a psycho-social model of agents to un-
derstand the impact of media on fear and of fear on behavior. We utilize real-world data to calibrate our model
and use a compartmentalized extended SIR-Model to simulate disease progression. We use anOpenStreetMap-
basedapproach togenerate realistic andperformant street nodenetworks and simulate apopulation’smobility
and behavior, which is calibrated using real-world data.

RelatedWork

2.1 In this section, we briefly introduce disease modeling in general. A�erward, we provide an overview of the
theories guiding our agent-basedmodeling approach.

Modeling of disease spread

2.2 Mathematicalmodeling allows for the derivation ofmacroscopic or system-level dynamics frommicroscopic or
individual dynamics and behavior (Hethcote 1989). One area of application for mathematical modeling is the
spread of infectious diseases. The basis for modern disease modeling is the so-called SIR model by Kermack &
McKendrick (1927). This deterministicmodel assumes that individuals canbedivided into three distinct groups:
They are either susceptible to the disease (S), infected with the disease (I), or removed (R), i.e., recovered or
deceased. On a system level, one can observe first an exponential increase in infected individuals. Once the
fraction of susceptible individuals is su�iciently reduced so that the disease cannot spread as easily anymore, a
decrease in new infections occurs.

2.3 Using the SIR model, three threshold parameters can be described which are central to the description of dis-
ease spread: R0,R and σ. R0 represents the basic reproduction rate at the beginning of the infectious spread
when all individuals are susceptible. R represents the average reproduction rate which changes during the in-
fectious spreadas the amount of susceptible individuals decreases. Finally,σ represents the averagenumber of
connections that will lead to a transmission of the disease. At the beginning of the infectious spread, all thresh-
olds are the same. But as the infection spreads and the fraction of susceptible individuals decreases, σ andR
decrease as well. It follows thatR0 ≥ σ ≥ R (Rodrigues 2016).

2.4 There are many extensions of the SIR model. For example, the SEIR model di�erentiates between two kinds of
infected individuals: Exposed (E) individuals, i.e., individuals that are infected but not yet infectious, and infec-
tious (I) individuals (Hethcote 2000). As reviewed by Estrada (2020), compartmental models like the SIR, the
SEIR and its extensions are prominent in the modeling of COVID-19 epidemiology. For example, Dehning et al.
(2020) combined a SIRmodelwith Bayesian inference to analyze the e�ectiveness of the German interventions
implemented in spring 2020; Worby & Chang (2020) and Götz & Heidrich (2020) used the SEIR model as a foun-
dation.

2.5 In a review of epidemic models, Badham & Gilbert (2015) found that most models were deterministic mathe-
matical models like the models described above. As the model population was compartmentalized according
to an (extended) SIR model, modifications in behavior were implemented by modifying the transmission rates
in the associated di�erential equations. Perez & Dragicevic (2009) described this approach as a possible short-
coming of mathematical models as it is based on the assumption that the population is homogeneous, both in
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its behavior and in its spatial distribution. This neglects the influence an individual’s behavior and social con-
tact network has on the spread of an infectious disease (Wilensky & Rand 2015). Using agent-based modeling,
behavior and the contact network can be included.

2.6 A current example of an agent-based model harnessing this potential is the model by Aleta et al. (2020) who
modeled the disease spread in the Bostonmetropolitan area. Generally, in research on the COVID-19 pandemic,
agent-based modeling has been most commonly used to simulate the e�ects of di�erent non-pharmaceutical
interventions (e.g., Silva et al. 2020; Hoertel et al. 2020; Bouchnita & Jebrane 2020).

2.7 For our model, we follow the approach described by Perez & Dragicevic (2009). In agent-based modeling of
disease spread, they propose the inclusion of two complementary aspects: Firstly, an infection model like the
mathematical models described above, which maps the parameters of the disease itself. Secondly, an agent
model that represents the behavior of the population including the spatial and social infrastructures govern-
ing contact, and therefore possible transmission of disease, between individuals. Both of these aspects are
discussed in the following.

Agent-basedmodeling - Disease spread

2.8 For the infection model, Khalil et al. (2012) propose an extension of the SEIR model. This extension is depicted
in Figure 1. They introduce the following states: Contact with an infected individual (C), infected but not quar-
antined (NQ), quarantined (Q), dead (D) and immune (M).

Figure 1: The proposed extension to the SEIR states by Khalil et al. (2012, p.209) with added states C (Contact
with infected), Q (Quarantined), NQ (Infected but not quarantined), D (Dead) and M (Immune)

2.9 With the exception of the dead (D) parameter, all of the added states influence the potential of infection trans-
mission when two agents come into contact. Concerning the way agent-to-agent contact is modeled, the pos-
sibilities range from simple to very complex: For example, Hethcote (2000) discusses the law of mass action
as a possible simple way of modeling disease spread. This would imply that the rate of infection scales with
the population density. However, this does not hold true especially for very high or very low population den-
sities. A more sophisticated approach is modeling the spread of the disease through grid squares, where each
grid di�ers in population size and environment type (e.g., hot, cold, damp, dry . . . ; Scottish COVID-19 Response
Consortium 2020. Aleta et al. (2020) modeled COVID-19 transmission in the Bostonmetropolitan area, creating
a contact network by combining empirical mobility data with census data. On the very complex side, Perez &
Dragicevic (2009) designed amodel which tracks agent contacts as theymove through their daily routine in an
environment mimicking a city with dedicated places for work, school, leisure, etc. While this results in a very
precise fit of the model infection spread to the empirically observed infection spread, a model like this would
be hard to scale beyond the city level.

2.10 In addition to direct agent-to-agent contact, which mostly is the main mode of transmission, some diseases
also spread through residues of their pathogens in the environment. For COVID-19, there is evidence that it can
be transmitted via surfaces (van Doremalen et al. 2020). Including this mode of transmission in amodel results
in di�erent patterns of disease spread compared to the case of only person-to-person transmission (Wilensky
& Rand 2015).
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Agent-basedmodeling - Agent behavior

2.11 In addition to infection, the diseasemodel also includes agent behavior.In themathematicalmodel byWilensky
&Rand (2015), agentsmove randomly through space, each step infecting one of their uninfected neighborswith
a given probability of infection. 1 The simplified model helps to decipher the underlying dynamics of a disease
such as the reproductive number and thus the threshold at which an infection becomes an epidemic.

2.12 In contrast, Harris et al. (2019) largely ignore agent behavior in their model. Instead, only agents born in the
current time step canmove and the virus itself moves across the network. Also, the virus can onlymove if it has
been generated in the same time step. Since a new virus is created in each round of the model, the virus can
spread across the environment. The simplified human behavior can generate predictions that correspond to
specific patterns of infectious spread. Wang et al. (2021) find that the inclusion of human activity patterns, e.g.,
attendance of work or school, are vital in modeling COVID-19 transmission.

2.13 To realistically replicate disease spread behavior, more complex human behavior (i.e., moving agents and indi-
vidual behavior) is required. Nevertheless, proper cognitive architectures are rarely used for infectionmodeling
because the disadvantages of high computational power requirements, high complexity, and high level of de-
tail outweigh the advantages in accuracy. So far,more realisticmodelswith a high level of detail have only been
achieved at small scales with, for example, 1000 agents (e.g., Perez & Dragicevic 2009; Naveh & Sun 2006) or
involving large computational nodes (e.g., Bhattacharya et al. 2019). However, particularly for disease simu-
lations, a higher number of individuals can better replicate propagation at larger scales. Ideally, a predictive
agent-based model should enable a one-to-one relationship between agent and inhabitant for the most fine-
grained simulation possible.

2.14 In most recent disease models, behavior is classified as so-called conceptual behavior. This implies that the
population mixture is homogeneous and therefore does not actually represent the behavior of individuals in
the real world. The conceptual models employ abstract agent cognition to achieve large-scale performance
and facilitate modeling. For example, Khalil et al. (2012) use conceptual behavior for agents in their model.
During the day, agents have di�erent social groups of social contacts through work, school, family, and their
daily routines.

2.15 Parker & Epstein (2011) generate di�erent agent routes, such aswork-from-home or nine-to-five jobs, that lead to
di�erent rates of family, work, and chance of contact at di�erent times of the day. In addition, agent behavior
can bemodified in terms of how long agents walk through the environment on a given day. The behavior of the
agents also depends on policies as, for example, rules for social distancing or job closure.

2.16 Recent agent-based models (e.g., D’Orazio et al. 2020) also use simple cognitive models and spatial structures
and treat individual cognition and resulting behaviors such as mask-wearing and density factors as constant,
empirical parameters. Another example is the spatially explicit COMOKIT model that allows the modeling of
COVID-19 spread at the scale of a city (Gaudou et al. 2020, see also Mahdizadeh Gharakhanlou & Hooshangi
2020).

2.17 Although human behavior is an important factor in the spread of infectious diseases, little research has been
conducted on how individual behavior a�ects it. For example, the spread of a disease can be stopped if the
numberof agents carrying it is so low that thediseasedies out (Funket al. 2009). Whether an individual changes
its behavior (for example, reducing contacts) depends on the information received (Funk et al. 2010).

Behavior change and information flow in agent-basedmodels

2.18 Many epidemic models have assumed that human contact structure remains the same during the course of
an epidemic and ignore that human behavior adapts to the presence of infectious diseases (Pastor-Satorras
et al. 2015; Parker & Epstein 2011). Funk et al. (2010) cite several examples of changes in human behavior in the
face of infectious diseases, such as voluntary self-quarantine during the bubonic plague pandemic, changes
in travel behavior, and general protective behavior in the face of diseases such as measles and HIV. Research
suggests that this change in human behavior can lead to a decrease in transmission rates (Nishiura 2007) or,
as mentioned before, even stop the spread of a disease. Empirical evidence from the first wave of COVID-19 in
Germany demonstrates the e�ectiveness of enforced protective behavior, i.e., the so-called lockdown (Bönisch
et al. 2020; Müller et al. 2020). It also indicates that protective behavior was at least in part influenced by fear
(Jørgensen et al. 2021; Stangier et al. 2021). This is further underlined by mobility only slowly increasing once
the lockdown ended (Bönisch et al. 2020).

2.19 It is important to capture both directions of the dynamic between the infection behavior (see Section 2.7) and
humanbehavior (seeSection2.10)model: howagentbehavior a�ects the spreadofdisease, andhowthespread
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of disease a�ects agent behavior (Funk et al. 2010). Because people act on information, information is the pri-
mary reason for behavior change of individuals.

2.20 Funk et al. (2010), in their review of models that incorporate behavior change, discuss three dimensions of this
change: the source of information, the type of information, and the e�ect of behavior change. The source of infor-
mation is usually divided into two forms: Globally available information carried by websites, newspapers, and
TV news, and locally available information from a social or local network. Including both kinds of information
sources has implications for the outcome of the simulation. For example, it is plausible that if beliefs against
vaccination have spread in an area, less individuals in this area would be willing to get vaccinated. Similarly, it
has been shown that if many individuals in an area are aware of a disease and adapt their behavior to the con-
ditions of the disease, that the disease may die out. Both examples show that information (local in this case)
can have an impact on the outcome of a potential simulation situation.

2.21 Funk et al. (2010) classify the types of information into belief-based or prevalence-based. Thus, a distinction is
made between the actual prevalence of the disease and beliefs about its prevalence.

2.22 Third, an individual’s behavioral change a�ects disease spread when it a�ects either the structure of their so-
cial network, disease parameters such as infection and recovery rates, or transmission between states of the
disease. This may also be the case with studies of vaccination decisions that alter disease states, individual
behaviors such as social distancing that reduce infection rates, or quarantine that drastically reduces an indi-
vidual’s social network (Funk et al. 2010).

2.23 As mentioned above, compartmental disease models do not not account for the heterogeneity of individuals.
To improve modeling of behavioral decisions, Badham & Gilbert (2015) developed the TELL ME model that in-
corporates heterogeneous change in behavior due to communication.

TELL ME project

2.24 The key components of the TELL ME model aremessages,regions, and individuals. Individuals perform protec-
tive behavior, which they compute depending on their attitude, perceived threat, and subjective norms. The
protective behavior is in a feedback loop with the regional force of infection, incidence, and vulnerability.

2.25 Withbehavioralmodels, it is di�icult to assesswhichparameters touseand todetermine their relative influence
on behavior. For the TELL ME model, Badham & Gilbert (2015) use a combined approach from the Theory of
Planned Behavior and the Health Belief Model. They operationalize it by taking a weighted mean of the key
inputs of attitude, subjective norms, and threat, and comparing this mean to a threshold to determine whether
or not a behavior is adopted. In the model, communication is simulated by transmitted messages that consist
of five parts: the sender (usually the health authority); the e�ect, which is calculated later in the model; the
message content; the channel, which specifies the transmission medium; and the receiver.

2.26 Themessage content consists of thepossiblebehavior that anagent canexhibit and the content that is specified
in the message. The content of the message either recommends that the agent performs a behavior or the
content exerts an influence on the agent’s attitude, trust, and perceived social norms. In the model, people
who use the respective channel (social media, mass media) and hold the corresponding target flags receive
themessages (For example, only people with the "high risk" flag receivemessages directed to them. Messages
are sent at specific times and received immediately by the target audience.). It is important to note that in the
TELL ME model, agents behave only according to the information available to them. As a result, their behavior
sometimes di�ers greatly fromwhat would be ideal under the current circumstances (Badham & Gilbert 2015).

2.27 Funk et al. (2010) adopt the idea of bounded confidence from Hegselmann & Krause (2002): Messages change
behavior only if a person’s attitude is close to the message. If the recipient is within a range of acceptance of
the sending institution, attitude change is calculated as the product of confidence in the message source and
the di�erence between the message’s attitude and the agent’s prior attitude. Using the categorization of Funk
et al. (2010) described above, the TELL MEmodel uses both local and global information sources, a prevalence-
based information type, and a binary behavior change with vaccination acceptance or refusal. In the model,
communication leads to homogeneous behavior change. However, this could not be verified yet empirically.
In simulations of vaccination behavior adoption over the course of the H1N1 epidemics in France, Hong Kong,
and Italy, the fit of predicted behavior was poor. In particular, the simulations could not replicate the observed
dissonance of strong protective behavior peaking before the epidemic itself reaches a local peak, although they
attempted to implement the di�erence between the real facts and the information available to the individual
(Badham&Gilbert 2015). This showswhat aspects an improvedmodel should take into account: Individual be-
havior that is not correlated directly with the risk of infection, but rather with the perceived danger and novelty
of the disease.
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Agent zero

2.28 With Agent Zero, Epstein (2014) has introduced a second model that is fundamental for this study. The Agent
Zero model is based on neurocognitive principles and consists of three parts: a�ective, cognitive, and social
components. These three parts define an agent’s behavioral disposition and determine if an agent performs an
action. The agent responds to stimuli (events) that (may) trigger fear or other feelings and shape the agent’s be-
havior. The strength of associationof a feeling to a stimulus determines the strength of the response. A stimulus
may be the experience of a criminal act, the infection of a person, or the sudden drop in the price of an index
stock. For thea�ective component, theRescorla-Wagnermodelof conditioning is usedas thecentralmechanism
(Epstein 2014). In the Rescorla-Wagner model, learning describes an association between conditioned and un-
conditioned stimuli. If the conditioned stimuli predict the unconditioned stimuli, there is a strong association
between the stimuli.

2.29 The model states that a stimulus leads to a strong learning e�ect at the beginning and that this learning e�ect
decreases the closer the current association is to the strongest possible association. This is also referred to as
bounded growth. A�er a stimulus is presented, the strength of the association decreases rapidly at first and
then more and more slowly (Rescorla & Wagner 1972). This process is also referred to as extinction. The model
consists of a two-phase model for the association and extinction of fear (see Figure 2).

Figure 2: The associative strength grows first rapidly and then slowly nears themaximum associative strength.
A�erwards, we see a initially strong decline that grows slower over time. Figure from Epstein (2014, p. 42).

2.30 The model explains attributes such as fear that remain active long a�er the presentation of an initial stimulus.
At each step, the agent checks whether it has been exposed to a stimulus and updates its association strength
accordingly. In Epstein’s model, agents have a limited radius from which they retrieve information 2. Thus,
agents form their opinions (cognitive component) based on spatial sampling. In addition, agents havememory
and compute amoving average estimateof events thatwerewithin their sample radius. The cognitive anda�ec-
tive component combined form the solo disposition, i.e., the disposition of the agent without social influence.
The social component is based on a network transmissionmodel in which individual dispositions are weighted
and added up and determine whether an action is performed. It is not the behavior, but the disposition for an
action that ensures that other agents perform an action. Overall, the agent considers both its own disposition
and a weighted sum of the other agents. If the resulting disposition is greater than a threshold, the agent acts.

2.31 Epstein’smodel focuses onphenomena suchas fear andviolence as action, but canbeapplied toother contexts
as well. Fear can lead to behaviors such as social distancing or self-quarantine, which can alter the course
of an epidemic. Epstein also points to this possibility and suggests that this mechanism may be responsible
for various ripples that can occur during epidemics. For example, fear could lead to protective behavior that
reduces average infections, which in turn reduces fear and thus protective behavior, leading to a new wave of
infections. Thus, themodel is very well suited as a basis for our developedmodel. Epstein’s model provides an
approach to modeling growth and decay of dispositions toward a stimulus, as well as how these dispositions
can bemodeled in individuals and networks.

Our contribution

2.32 Ourmodel builds on the aforementionedmodels and incorporates the identified stylized facts. Themodel rep-
resents the ongoing COVID-19 epidemic in an exemplary German city, Aachen. It incorporates infection and
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agentmodeling insightswithmechanisms for behavior change based on information. With a conceptualmodel
of cognition, the model allows for a balance between realism and meaningful abstraction, limiting modeling
and data requirements and allowing the model to be applied to other diseases. This way, infection behavior
can bemodeled realistically withoutmaking themodel overly complex, while agent behavior and spatial detail
should as of now be kept at a conceptual level in order to balance complexity and computational e�orts.

Method

3.1 Our model simulates the spread of COVID-19 in a German city starting on Februar 14, 2020, and the influence
of media and individual behavior change on this spread. We formulated the following goals for agent behavior
and properties: agents must have realistic demographic properties, a realistic day-to-day behavior and exhibit
realistic behavior changes. While keeping inmind that themodel should allow a large-scale simulation, several
aspects have to be tackled to generate a model with the desired properties.

3.2 First, the model should incorporate the diversity of human demography, attitudes and behavior in Germany.
Second, the modeled infection should exhibit similar properties as the real infection and generate a similar
spreading pattern. Third, the cognitive architecture driving agent behavior should lead to patterns that mimic
empirically observed patterns of human behavior.

3.3 The influence ofmedia and communication is incorporated to evaluate whether they can help with curbing the
spread of the epidemic. Our model builds upon the important findings of the TELL ME project and its modified
behavior model (Badham & Gilbert 2015), the fear model of Epstein (2014) and the incorporation of media.

3.4 The media aspect is realized in the form of messages to the population that communicate behavioral guide-
lines, acceptance rates and the progress of the epidemic. The termsmessages and communication are used to
refer to the parametrized media in form of messages.To avoid confusing di�erent terms, we highlight model
parameters and proper names in italics. The model parameter protective behavior is shortened in the running
text to behavior, social norms is shortened to norms to facilitate reading and reduce redundancy. Since half-
life decay is the central component for the extinction of attitudes (Epstein, 2014), the extinction process is also
referred to as decay. The presented model is referred to as Bounded Fear Growth model, abbreviated as BFG
model.

Model features

3.5 Subsequently, we describe the distinct features of our models and explain why we decided on certain model
dynamics.

3.6 In Table 1, we list values we chose for di�erent model and agent parameters and state variables.
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Table 1: Model parameters and state variables

Description Value Source
Initial attitude towards pro-
tective behavior

Sampled fromN(µ = 55.52, σ =
16.54), adjusted for age and gen-
der

YouGov 2020a

Wealth Sampled from B prime distrib.
(α = 2.29, β = 108.029), trans-
formed to match average spend-
ing capacity

Institut der Deutschen Wirtscha� (2016)

Household size Sampledproportionally from [1, 5] Statistisches Bundesamt (2011)
Workplace size Sampled from Rayleigh distribu-

tion (σ = 96.31 ), based on aver-
age o�ice sizes

Stottrop (2007)

Number of close friends Sampled fromN(µ = 11, σ = 3) SINUS-Institut (2018)
Number of acquaintances Sampled fromN(µ = 20, σ = 5) Assumption
Fraction of population re-
ceptive to norm and atti-
tude messages

90% Infratest Dimap (2020)

Frequency of normative
media messages

Once a day to every 10 days, based
on empirical frequency

GDELT Project (2020)

Frequency of media mes-
sages influencing attitude

Once a day to every 10 days, based
on empirical frequency

GDELT Project (2020)

Base probability to interact
with friends

Weekday: 10%, weekend: 30% Assumption

Probability of working on
the weekend

27.6% Statistisches Bundesamt (2019)

Probability to skip social ac-
tivities during lockdown

90% Assumption

Probability to stay home
from school during lock-
down

100% Assumption

Probability to work from
home during lockdown

49.8% MAGS NRW 2020

Probability to skip social ac-
tivities a�er lockdown

Decreases by 2% per day Assumption

Probability to return to the
o�ice a�er lockdown

Increases by 2% per day Assumption

Direct contact infection rate
with protective behavior

3.66% Chu et al. (2020)

direct contact infection rate
without protective behav-
ior

9.5% Chu et al. (2020)

Indirect infection rate when
using public transportation

3% Mossong et al. (2008)

Intra-household infection
rate without protective
behavior

16.3% Li et al. (2020)

Agents andmapping

3.7 We programmed themodel in Julia (Bezanson et al. 2017), with the Agents.jl package (Datseris et al. 2021) pro-
viding fundamental functions. Julia provides high computingpower andenables the integrationof several data
sources.

3.8 Typically, disease models use contact networks to identify who infects whom. However, accurate data on such
networks are rare. Therefore we created a spatial structure and the commute routes that are mainly based on
empirical data. In our model, the number of friends and acquaintances is also empirically grounded. To mini-
mize the impact of minor changes in the network, we build the network in several layers. Each agent is placed
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in closed friendship networks (cliques), closed (but larger) acquaintance networks, and agents pick schools (or
workplaces) in their spatial vicinity. This should prevent the existence of critical nodes with high centrality that
are connected to a lot of other nodes. It is also unlikely that the network will have isolated components. It also
assumes no large gathering occurs. We picked these assumptions, because they would have no drastic impact
on viral spread in di�erent simulations. This assumes that there are no or few super spreading events, which
reportedly was not the case in the first wave of the pandemic.

3.9 We generated the model space as a network of streets (edges) and intersections (nodes) from a given location
and its OpenStreetMap (OpenStreetMap Foundation 2020) representation. We converted a given .OSMmap to
a node network that replicates real-world streets and their intersections.

3.10 This map is then filled with agents whose age, gender and population density is based on the German Census
2011 (Statistisches Bundesamt 2011). The Census 2011 provides information like age and gender about the in-
habitants of Germany on a per-hectare basis. The generated agents are then grouped together in households
ranging from one to five persons (single households, couples, and families) in proportion to the distribution
of household sizes in Germany (Umweltbundesamt Bundesrepublik Deutschland 2017). Furthermore, agents
receive a wealth property based on a BetaPrime distribution (Mirzaei et al. 2019) with a sample mean of the
average spending capacity (purchasing power) per state (Institut der Deutschen Wirtscha� 2016).

3.11 Workplaces are randomly distributed across the map and agents between 18 and 65 years are then assigned
to the preferably closest workplace. The workplaces employee capacity is determined by a continuous distri-
bution based on the survey of o�ice sizes of Stottrop (2007) divided by the default space per worker of 15 sqm
in accordance with BAUA (2013) guidelines. The wealthier an agent, the smaller is the workplace he is going to
workat, possibly resulting in contactswith fewer agents and therefore adecreased infection risk. This approach
reflects that low-andmiddle-incomeworkers aremore at risk byCOVID-19 than thosewith higher incomedue to
less social protectionmeasures and limited access to health services (International Labour Organization 2020).

3.12 Agents between five and 18 years are assigned to the closest school. Schools are generated based on real loca-
tions denoted by the corresponding OpenStreetMap tag and do not have a capacity limit.

3.13 To represent social behavior, agents are assigned a group of close friends (µ = 11, σ = 3, SINUS-Institut 2018)
and a twice as big circle of acquaintances (µ = 20, σ = 5). On average, people interact with their friends once
to multiple times per week (Blom et al. 2020), which is incorporated as selecting 10% of the population on a
daily basis to engage in social or distant activities. On weekends this rate is set to 30%.

3.14 We generated a daily routine for each agent from the aspects work or school, social group, distant group and
home. Agents move up to four times per day (towards and back from work/school, towards and back from
social or distant activities). The probability of going to work on the weekend is reduced to 27.6% following the
data of Statistisches Bundesamt (2019), concerning the average probability of working on the weekend.

3.15 At the last step of the agent generation, the base attitude towards protective behavior is computed. Based on
the trust in thehealth care system (YouGov2020a),attitude ismodeled as anormal distribution (µ = 55.52, σ =
16.54). Here, trust is understood as general confidence in a working health-care system, which in turn makes
individuals more receptive to governmental information and instructions with regard to health-protective be-
havior. The sampled attitude is then adjusted so that women exhibit slightly less trust (Perrotta et al. 2020)
and trust also decreases with age (Guerrero et al. 2015). Overall, trust in ourmodel represents a rather constant
perception of the overall state of the healthcare system and is only influenced by news reporting.

3.16 Figures showing thedistributionsdetermining theattitude,workplace sizes, daily contacts andmaximumwork-
place size per agents can be found in the Appendix (Figure 18).

Infection parameters and disease progression

3.17 The infection stages used in the model are an extension of the SEIR model so that the daily routine of agents is
represented adequately with regard to the lifecycle of the infection. Figure 3 depicts the generated extension
of the SEIR modelwith the individual states of the disease and the transmission probabilities and time periods
between them. The states of infection and their explanation can be found in Table 2. Information regarding
the infection parameters is mostly based on the Robert Koch Institute fact sheet, which consolidates studies
regarding the COVID-19 epidemic (Robert Koch Institut 2020b).
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Table 2: States of Disease

Abbreviation State Description
S Susceptible Initial population
E Exposed Agents exposed to the virus
NQ Not Quarantined Agents that show symptoms and are not in quarantine
IwS Infected without symptoms Agents that carry and spread the virus, but do not exhibit symptoms
Q Quarantined Agents with symptoms that undergo self-quarantine
HS Heavy symptoms Agents in quarantine with strong symptoms
D Dead Deceased agents
M Immune Agents that overcame the infection and are temporarily immune

Figure 3: The updated states with transition parameters as used in the model. Asterisks at a transition signify
that the probability is influenced by the second factor. The transitions outgoing from Not Quarantined and
Quarantined are further explained in Section 3.21.

3.18 Several factors influence the risk of infection between agents. The main factor is the protective behavior of
an agent, which decreases the risk of infecting others (as quantified by Chu et al. 2020) by adopting health-
protective measures like wearing masks, keeping a safe distance and regularly washing hands. Behavior also
influences one’s decision topartake in social activities, where agentswith activebehavior aremore likely to skip
these interactions. Furthermore, agents can choose to reject to self-isolate and therefore risk infecting others
based on their behavior.

3.19 Travel to and from activities also poses a risk of infection by indirect contact, influenced by the agents wealth.
This captures that less wealthy persons are more likely to use public transport (Governing.com 2012), which
increases contact with others on the route. Wealth also indirectly increases the risk of infection since wealthier
agents favor workplaces with less employees, resulting in less contacts on average at the workplace. Further-
more, age indirectly influences infections risk since the number of daily contacts relevant to infectious diseases
di�ers between age groups (Mossong et al. 2008).

3.20 Initially, all but a predetermined number of Exposed agents are Susceptible. By direct contact (at work/school,
home or social activities) or indirect contact (travel) with infected agents, agents become Exposed to the virus.
The infection process is modeled as a Bernoulli process with the number of contacts in the same node and the
given infection rate (3.66% for active behavior, else 9.5%, Chu et al. 2020). For each successful draw, a random
agent from the node is selected andmodeled as Exposed.

3.21 For infection via travel, infected agents add their traveled edges to a pool of infected edges. The infection risk
is modeled as Bernoulli trial with the number of "contaminated" edges on the agents route as samples and a
risk rate adjusted by the share of daily contacts of travel (3%, Mossong et al. 2008) and a wealth factor of the
di�erence to the mean income.

JASSS, 25(1) 3, 2022 http://jasss.soc.surrey.ac.uk/25/1/3.html Doi: 10.18564/jasss.4723



3.22 Infected agents become Exposed and transition to either Infected without Symptoms (22%) or Not Quarantined
(78%) a�er five days (Robert Koch Institut 2020b). A day a�er symptomonset, agentsmove toQuarantine. A 5%
percentage is assumed as deviant, influenced by the agents’ behavior. All agents in the household also become
Quarantined, as this is the recommended behavior in Germany. Quarantined agents stay in their home and do
not travel across themap. However, a 16.3% risk of infecting other agents in the household exists (Li et al. 2020),
which can be lowered by behavior.

3.23 12% (Robert Koch Institut 2020a) of Quarantined and Nonquarantined agents are at risk of developing heavy
symptoms a�er four days from symptom onset (Robert Koch Institut 2020b). The individual risk increases with
age (Robert Koch Institut 2020a) which is modeled as a linear growth with a baseline of 35 years. A�er ten days
treatment, 22%of the agentswith heavy symptoms decease (Robert Koch Institut 2020b). Agents in quarantine,
not in quarantine and infected without symptoms overcome the infection a�er 14 days (the average infection
period according to Robert Koch Institut 2020b). Immune individuals become susceptible again a�er 75 days,
based on the findings of Long et al. (2020) who identified an immunity period of two to threemonths. Absolute
cases, percentage of the population infected and the logarithmic growth rate (K) are used to evaluate infection
growth.

Behavioral model

3.24 The agent’s health-protective behavior is a central aspect of this model as it has a large impact on infection
risk and number of daily contacts. A day is divided into four steps of move and infect stages. First, the move-
ment is computed, then infections, fear and behavior. On their daily schedule, agentsmove to their workplace,
school, social nodes and back home. Agents above the behavior threshold can skip the step for social activities
during the lockdown period (6th March 2020–24th April 2020) with a 90% chance. Schools are assumed to be
closed during the lockdown. Attending the workplace, e.g., the o�ice, is avoided with a 49.8% chance (für Ar-
beit, Gesundheit und Soziales des Landes Nordrhein-Westfalen 2020). The model allows to set up these three
dynamics (contact reduction, school closure, home-o�icemandates) separately so that it is possible to account
for various lockdownmeasures for future research.

3.25 The behaviormodel is composed of threemain components: social norm, attitude and fear. Attitude is the base
attitude towards protective behavior, which is determined by trust in the health care system and demographic
factors. Fear models the perceived risk the infection poses to the agent and his surroundings. Social norms
represents the average behavior of other agents in the same nodes. Figure 4 shows the interaction of these
components and how they constitute the agents behavior.

Figure 4: Model of behavior. The components influencing behavior. Attitude and norms are averaged, while fear
is used as multiplier for this average value.

3.26 The behavioral model is based on the approach from the TELL MEmodel (Badham & Gilbert 2015), which uses
the three individual factors as following:

behavior = attitude+
norm

4.5
+ fear (1)
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3.27 This assumes equal influence of the three factors. However, evidence points to fear being a major influencing
factor for protective behavior during the COVID-19 epidemic (Harper et al. 2020), even a dominant emotional
response in time of crisis (van Bavel et al. 2020). Fear appeals are shown to positively influence protective be-
havior (Tannenbaum et al. 2018). To give justice to the precedence of fear over the other factors, the equation
is adjusted to:

behavior =
attitude+ norm

2
∗ fear

100
(2)

3.28 The changed equation reflects the importance of fear. By adopting fear asmultiplier insteadof a summand, fear
acts as amoderatorwhich can cause an otherwise incompliant person (by attitude and norm) to adopt behavior
(and vice versa).

3.29 Social norms are computed as the average behavior of other agents in the same node during the "work" step,
which can be the household, classmates orwork colleagues. Agent attitude is computed at themodel initializa-
tion as described in Section 3.6. Additionally, like the fear component, both these components are influenced
by input from newsmedia which is described in Section 3.32.

3.30 The fear factor is based on the number of reported daily cases and infected acquaintances of the agent. The
total number of daily infections is divided by the total number of agents for normalization. This approach is
derived from the cumulative incidence as used by Badham & Gilbert (2015), and is also supported by Murray &
Schaller (2012), which find that the cumulative incidence of infections is linked to behavior and conformity. The
second component, infected acquaintances, is linked to the local incidence of the infection, which influences
the perceived fear (Badham & Gilbert 2015). Here, the growth of active cases in the personal environment (ad-
justed by a correction factor) is used since now agents directly experience the infections. Wemodel fear as only
dependent on local information (infected acquaintances) and global information (new cases per day), as seen
in Funk et al. (2010). Other factors could be age (since risk growswith age) or death rate (which is dependent on
general health care system capacity and environmental factors amongst others). This would however firstly in-
troduce a lot of complexity. Secondly, we want to focus on fear as stimulus, which we emphasize is not directly
dependent on the risk for the individual. The assumption of fear as dependent on the increasing stimulus of
cases allows to draw the analogy to the Rescorla-Wagner model as applied by Epstein (2014)

3.31 Together, the factors attitude, fear and social norms provide a balanced threat response. However, a central
issue identifiedwithcommonthreatmodels is the linear growthof fearwith infections. Toaddress thisproblem,
the approach of bounded growth and half-life extinction as presented by Epstein (2014) is applied as follows:

fear = 100 ∗ 2.2 ∗ (1− exp (−global cases ∗ personal cases)) (3)

The multiplicands 100 and 2.2 are used for scaling and fitting respectively, resulting in an output range from
zero to 220, meaning that fear can grow up to 120% per day. To prevent overshooting, the resulting fear level is
averaged over a calibrated value of the last six days. Overall, this function allows to model fear growth with a
sharp initial increase that levels out a�erwards.

3.32 The fear decay is, as used by Epstein (2014), adopted from the regular half-life equation. It is activated when
fear growth has peaked (three days of less than 4% growth) and computed as follows:

new fear = old fear ∗ (1− exp

(
−time
150

)
) (4)

Aswith theRescorla-Wagnermodel, fear therefore first decays strongly and then slower and slower. However, in
the Rescorla-Wagnermodel, the stimulus is stopped at some point. In ourmodel, the stimulus is only diminish-
ing in the context of infections. Therefore, growth of fear ismodeled as time-independent (always active), while
the decay gets activated at a certain point in time (a�er the stagnation of infections). This results in the decay
overpowering the growth at some point, resulting in a decay curve similar to empirically observed decay. Ulti-
mately, the three factors attitude, social norms and fear are computed to produce the behavior. The behavior
change is limited to amaximum 40% increase and 10% decrease to support the steep growth and slow decline
as seen in Blom et al. (2020). A�er the behavior is calculated, the infection transmission and transfer between
infection stages takes place.

Communication

3.33 As Funk et al. (2010) find, information can significantly change the behavior of individuals, with studies such as
(The dynamics of risk perceptions and precautionary behavior in response to 2009 (H1N1) pandemic influenza)
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and (Legacy and socialmedia respectively influence risk perceptions andprotective behaviors during emerging
health threats: A multi-wave analysis of communications on Zika virus cases) finding a positive impact of news
on protective behavior. We assume a positive influence of news and model this information with influence on
each behavior component.

3.34 Agents receiveperiodic input fromnewsmedia in formofmessages to represent the influenceofmedia appeals.
Two types ofmessages are set up: First, a channel that provides infection case number to the agents, informing
them of the global infection. The secondmessage type influences norms and attitude by representing appeals
to the population that increase adoption of protective behavior. To simplify the representation of news, we
use a keyword-based approach to evaluate those appeals. The frequency of appeals is based on the frequency
of certain keywords (see the Appendix) on the press and media database GDELT for German articles (GDELT
Project 2020). Note that during the initial stages of the pandemicmodeled here (starting February 2020), COVID
information was connoted very positively, whereas the infodemic stage only began later. This motivates the
positive interpretation of the mention of keywords as increasing trust.

3.35 We chose to capture articles mentioning behaviors like washing hands or wearing masks to implement com-
munication that has the potential to influence social norms (Dickie et al. 2018). To capture news influencing the
agents attitude towards the healthcare system, the attitude keywords aim to capture news related to the virus
and its spread. The number of messages captured for each message type is translated to a frequency ranging
from one to ten. Each day, if current day%frequency = 0, a message is sent. This ensures that with higher
frequency, more messages are sent, while also incorporating a certain randomness.

3.36 For norm and attitudemessages, 90% of the population are modeled as receptive (Infratest Dimap 2020). The
growth of both properties is governed by

new property = old property ∗ (1 + exp (−scaled property)) (5)

This equation uses the Rescorla-Wagner growth patternwith a scaled old property value to achieve the desired
growth curve. The decay function is varied since social norms are computed repeatedly, while the attitude only
once at initialization. Attitude decay therefore is modelled so that it returns to the base value.

new attitude = current attitude ∗ exp
(
−current attitude− prior attitude

correction factor

)
(6)

3.37 The greater the di�erence between current and prior attitude, the greater the decay. The norm growth bymes-
sages decreases globally with time.

new norm = current norm ∗ exp
(

−time
correction factor

)
(7)

The more time passes, the less e�ective norm appeals are.

3.38 We want to address here a distinction between our model and the real world: In the model, we assumemedia
to objectively represent infection dynamics and transport normative messages that encourage protective be-
havior. There is evidence that exposure to newsdoes stimulate such behavior (Tukachinsky Forster & Vendemia
2021; Jiang et al. 2021). However, the influence of news media as well as social media in the real world is obvi-
ously more complex and ambivalent: For example, US news were found to be highly polarized and politicized
(Hart et al. 2020) which possibly inhibited protective behavior (Hubner 2021). More than that, the spread of
misleading and downright false information termed infodemic by the WHO might lead to dangerous and even
harmful behavior (Naeem et al. 2021). Therefore, modeling the news media as only positively influencing pro-
tective behavior is clearly a simplification. As ourmodel covers only the beginning of the pandemic in Germany,
we argue that this simplification is still valid: Similar to ourmodel assumption, at this timeGermannewsmedia
was rather unified in transporting such normative messages and supporting government action (Müller 2021).
Relatedly, movements protesting COVID-19 protective measures and spreading misinformation only gained a
large following in the summer of 2020 (Jarynowski et al. 2020). Nevertheless, model e�orts covering di�er-
ent periods of times and countries with a di�erent news landscape might need to include a more elaborated
mechanism of media influence.

Model Analysis

3.39 For model calibration, we compared the face-validity of the model results with real-world data. While other
researchers use death counts to calibrate and validate their models, we chose to use infection counts although
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those depend on the testing capability. On the other hand, deaths depend on health care system capacities
and here, Germany is exceptionally well equipped. Deaths wereminimal during the first wave of the pandemic,
which is the phase ourmodel tries to replicate (Villani et al. 2020). Smaller numbers aremore sensitive to noise
in the data, which in our case makes incidence a better metric. The real-world data for infection counts stems
from Esri Deutschland GmbH (2020). For our analysis, we assume that the general infection trends in Germany
are representative of those in the city of Aachen. The German case counts were scaled to fit the agent pop-
ulation of our model. The adoption of protective behavior is based on Blom et al. (2020), which shows peak
protective behavior on the 16th March 2020 and slow decay a�erwards. Since this data is not detailed enough,
we complemented it with themobility data as compiled by Apple (2020). The shown trendmatches Blom et al.
(2020) and additionally provides detailed data on a day-to-day basis. The time series is inverted from "activity
levels" to correspond to the growing adoption of protective behavior. The fear trend of the population is based
on aweb survey by YouGov (2020b), which depicts the levels of high or very high fear regarding COVID-19. Since
the survey started only a�er the virus began spreading in Germany, two weeks of fear levels were prepended
extrapolated from the observed exponential growth phase. We discuss the validity of the fear levels further on
in Section 5.7.

3.40 Face-validity is a subjective judgement of model behavior and o�en used as first validation step (Heath 2010;
Xiang et al. 2005; Myers & Davis 2007). As additional, objective measurement, Mean Average Percentage Error
(MAPE),MeanAverage Error (MAE) andRootMeanSquare Error (RMSE) are used. TheMAPE is prone to toomuch
sensitivity for small values, which is balanced by the MAE which favors a prediction with correct Median, and
the RMSE which better captures intermittent peaks (Vandeput 2019).

3.41 The lack of validation and testing procedures for ABMs (Guercan et al. 2013) poses a problem for the hypothesis
evaluation. We use a t-Test (Welchs’s t-Test for unequal variances) when comparing model results for similarity
as recommended by Lee et al. (2015). For the comparison to real world data, we use face-validity and the ob-
served measurement errors (ME). The model infection trend is therefore compared with (adjusted) real world
infection data. 40 model runs are computed for each configuration and the results bootstrapped (5000 sam-
ples) to improve the estimates and calculate reliable confidence intervals.

3.42 We use the logarithmic growth rate of the infection, computed as

K =
dln(N)
dt

(8)

where N(t) is the number of diagnosed infections over time t. In practice, this results in the di�erence be-
tween the logarithm of any day’s cumulative infection count and the previous day. If we have 3000 cumula-
tive infections on day 1 and 5000 on day 2, the Log Growth of Infections is ln(N(1)) = ln(3000) = 8.01 and
ln(N(2)) = ln(5000) = 8.52. With that, the growth rate isK = 8.52− 8.01 = 0.51 for day 2.

Verification, validation, replication

3.43 We verified that themodel corresponds to the concept and that the model corresponds to the real-world data.
The code and data are provided on an OSF repository (OSF 2020) at https://osf.io/axv6q/for inspection.

3.44 Themicro andmacro behavior of themodel were tested repeatedly during the development of themodel. The
conceptual model and its goals are described in the method chapter. Since the aspects of realistic day-to-day
behavior, demographic properties andbehavior changes are incorporated, we consider our goals to be fulfilled.
By using the census, realistic and diverse demographic properties are incorporated into the model. Similar in-
fection spreading patterns as seen in the real world with exponential growth phases are also captured. The
cognitive architecture reacts to rising infections with protective behavior and the growth curves correspond to
the Rescorla-Wagner pattern (see Figure 21). This support the assumption that the implemented model corre-
sponds to the conceptual model.

3.45 Themodelwas validated against real-world trends of fear, behavior and infections. Themodel behaves reason-
able in di�erent regions and is therefore generalizable to countries with comparable social structures, health
care system and value norms as Germany. Themodel was calibrated by comparing the average results of eight
runs to real-world data and judging the face-validity as well as MAPE. The calibration results are presented in
the Appendix(see Table 3).

3.46 During the validation process with bigger agent populations and in di�erent landscapes (the district of Aachen
and Rostock, up to 67,939 agents), we noticed that the model results were not valid. The decay of infection
growthwasmainly causedbya lackof susceptible individuals, notprotectivebehavior. Instead,moreprotective
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behavior led to fewer cases (see Figures 21 and 22). A�er updating the fear computation and implementing
a lockdown release, the face-validity and macro-behavior was improved. A sensitivity analysis as performed
by Perez & Dragicevic (2009) was performed to evaluate the relative importance of di�erent parameters. The
results show a linear and valid reaction to parameter changes (see Table 4).

3.47 Themodel can be replicated by using the source code and data provided on theOSF repository (OSF 2020). The
data in combination with further setup-information in the repository allow researchers to adopt this model for
further academic use in other regions than Germany.

Model Results

4.1 Using our model, we conducted several experiments. The model allows calibrating the results with real world
infection and location data. We can derive conclusions about the interplay of fear and protective behavior dur-
ing a pandemic and generate similar infection and behavior trends as observed in Germany. The model can
provide insight on the impact of fear on behavior, and shows an improved fit to protective behavior in compar-
ison to the TELL MEmodel. While individual agent behavior has a strong impact on the spread of the epidemic,
the communication model did not show significant influence.

General model results

4.2 We will present three di�erent models with two di�erent scopes: a small city-wide model of Aachen (AC1) and
two larger district-widemodels of Aachen (AC2) and Rostock (RO2). AC1 will serve as themainmodel which we
will use to demonstrate the general workings of the model as well as the e�ects of di�erent parameters and
configurations. The two larger models AC2 and RO2 are used to demonstrate generalizability and scalability. If
not explicitly stated otherwise, any reference to the model or a simulation run will be to the AC1 model.

4.3 AC1 is populated in accordance with the German census data we acquired for the city of Aachen. 53.58% of
the agents are male and 46.41% are female, 9.4% are under 18 years old and 14.97% are over 65 (Statistisches
Bundesamt 2011). The wealth factor is set to 1408, as opposed to a country-wide 1482 (Institut der Deutschen
Wirtscha� 2016).

4.4 As for themodel performance, a simulation of fourmonths within the city of Aachen and 11,325 agents requires
287 seconds, resulting in 2.56 seconds per simulation step. When increasing model scale and size, for example
to the district of Aachen and 52,910 agents, a model run requires 7.54 hours and 242 seconds per step.

4.5 The agedistribution of the infected in the simulation is as follows: 3%under 18, 5%over 65 and92%between 18
and 65. For infections, the ratios are: 7.43% under 15, 66,94% from 15 to 60, 25,66% over 60 (Esri Deutschland
GmbH 2020). The fatalities of the simulation are distributed with 2% under 18, 69% between 18 and 65, 29%
over 65. Overall, a 3.6%mortality is observed. For fatalities in the empirical data, the ratios are 0.01% under 18,
4.81% over 18 to 59, 95.18% over 60 (Kremer & Thurner 2020). 95% of infections in the simulation are contact
infection, 5% are environmental infections (think: surfaces etc.), as compared to 10% environmental infections
as foundby Ferretti et al. (2020). On average, 21.05%of the cases are asymptomatic (compared toHe et al. 2021,
which find an average rate of 15.6%with a CI from 10 to 23%. Overall, these simulated numbers are in line with
the empirical data provided by RKI. As of 2021, the updated ratios show a reduced presence of infections and
deaths for the elderly, which is likely connected to the ongoing vaccinations and passed first waves.

4.6 Themodel also reproduces an infection risk gap betweenwealthy and less wealthy agents. The averagewealth
of all agents is 219, while the average wealth of infected agents is 209.

Model calibration

4.7 The parameters in the model are adjusted so that the outcomes of the simulations fit the empirical data for
infections, fear and behavior as closely as possible. Two changes are particularly impactful for this purpose:
The infection riskwas reduced from1.0 to0.8 tobetter capture the empirical development of infections, and the
fear growth factor is adjusted to 2.2 to match the empirical fear growth more closely. The calibrated functions
are shown in Figure 5, with the strength of the respective behavior (norms or attitude) on the y-axis.
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Figure 5: (a) Decay of attitude towards the original attitude (b) Decay of norms over time (c) Growth function for
both norms and attitude.

4.8 The adjustments increase themodel fit in terms of errormeasures, but lead to someundesirablemacro-e�ects,
namely high-frequent oscillations in the infected count that are not present in the empirical data. Figure 6
shows the cycle of mutual influence of the model factors.

Figure 6: Fear cycle leading to oscillations. Factors are influencing each other sequentially.

4.9 Furthermore, inmodel runs with higher population, the infection growth was unbounded by protective behav-
ior. When running themodel for longer periods (>200 days), infections rise up to nearly 100%of the population.
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4.10 Tomitigate these undesirable e�ects, fearwas averaged over awindowof six days in order to reduce the volatil-
ity of this variable. This was based on Epstein (2014) who also used amoving average computation for fear. Fur-
thermore, the impact of behavior on infection risk was reduced (from tenfold to threefold). Even though this
slightly decreases the fit with the empirical data, we reduce the problem of over-fitting and themodel general-
izes to other contexts much better.

4.11 Apart fromtheabove changes, somesmaller fixeswereapplied. Tobalanceout the increased fear growth factor,
the fear decay factorwasadjusted to 150accordinglywhich yields amore realistic decay. Theonset of fear decay
was adjusted as well so that it is applied a�er three days of less than 104% growth (see Figure 7).

Figure 7: (a) Fear growth function (b) Fear extinction function.

4.12 The adjustments result in less frequent oscillations and show periods of growth and decay as seen in the real-
world data. Most importantly, behavior has a long-term impact on the infection curves. The calibrated tables
are provided in the Appendix (see Tables 3 and 4).

Infection trends in themodel

4.13 The following section shows the resulting infection, fear andbehavioral trends observed in themodel and com-
pares them to the real world data. Initially, we will demonstrate how well the presented bounded fear growth
(BFG) model can reproduce the infection trends in the empirical data. We can simulate an artificial epidemic
that exhibits the desired curve with an initial exponential growth phase that eventually flattens out. In that re-
gard, the model matches the empirical observations well, however, there are two aspects that are reproduced
less accurately. First of all, the exponential growthphase starts about 10days earlier in themodel than in reality.
Secondly, contrary to the empirical observations, the reopening of workplaces and schools leads to immediate
outbreaks and subsequent steady growth (highest K: 5.49).

4.14 Specifically, the fraction of infected agents is at 7% on day 25, 29% on day 50, 49% on day 75 and it rises up to
86% by day 100. The MAPE is very high (MAPE = 1173.63) due to a large discrepancy in the beginning, the other
MEs indicate a good fit (RMSE = 0.13, MAE = 28%).

4.15 Toensure that themodel is not specific to theoriginal spaceof the city of Aachen,we ran it on themapof the full
district of Aachen as well. The population density was adjusted accordingly which yielded an agent population
of 22,087 agents.

4.16 The simulationof infection spread in theAC2model shows that the first inhibitionof the infection spreadbegins
at day 30. Subsequently, the infection spreads slowly, and breaks out again a�er day 75 with steadily high
growth rates between day 30 and 112 (mean K = 0.027). With the infection-curve adjusted, this results in MAPE
= 1196.9, RMSE = 0.25, MAE = 98%.

4.17 As a second comparison, we ran the model on the map of the district of Rostock too. The district of Rostock
provides very di�erent circumstances and provides a good benchmark for the generalizability of the model: It
is five times bigger than the district Aachen (3,422.51 km2 vs. 706.95 km2), but has less than half the population
(215,794 vs. 557,026). With an appropriate adjustment to the density factor, this yields an agent population of
14,126 agents.
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4.18 The infection spread in this configuration is significantly slower than in the previous two configurations with
the city and the region of Aachen respectively. The growth rate stays continuous a�er day 40 (K ∼ 0.2) and
the first noticeable inhibition of spread occurs at day 30, with a subsequent gradual growth a�erwards. The fit
according to the error measures is worse than for AC1 (MAPE = 374.84, RMSE = 0.42, MAE = 47%).

4.19 Overall, the model is able to produce face-valid infection curves in di�erent spaces. However, it is not able to
reproduce the more particular aspects of the empirical trends. For instance, the first outbreak took place too
early and there was a second outbreak in themodel that was not present within the timeframe of the empirical
data.

Figure 8: Cumulative infections in the city of Aachen. Infection spread is inhibited at day 30 and grows again
a�er day 75.

Figure 9: Cumulative infections in the districts Aachen and Rostock. The district Aachen shows significantly
higher infection levels than Rostock.
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Fear and behavior in themodel

4.20 The next objective is to compare the empirical trends for fear and behavior with the ones generated by the
model. First of all, we will review the results of the AC1 model with the city of Aachen as a map. Regarding
fear, the levels rise sharply a�er day 20, reaching their peak at day 35 with a subsequent slight decay. This
corresponds well to the empirical data (MAPE = 9.44, RMSE = 0.08, MAE = 8%). Behavior yields a similar curve
as fear, but with a slight delay and a lower peak a�er which there is, as for fear, a slight decay. Even though
this conceptually satisfies the expectations, the fit with the empirical data is lower for behavior than for fear
(MAPE = 40.1, RMSE = 18.18, MAE = 22%).

Figure 10: Fear and behavior levels in the city of Aachen. Fear and behavior provide a good fit to the real-world
trend.

Figure 11: Fear and behavior levels in the district of Aachen. Both trends show more variance, but the overall
trend is similar to the real-world data and city of Aachenmodel.
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4.21 In the district of Aachen, fear and behavior curves showweaker initial growth and less pronounced decay than
in the city of Aachenmodel (AC1). The general trend of both curves is face-valid with MEs for fear slightly lower
(MAPE = 17.95, RMSE = 0.16, MAE = 16%) than behavior (MAPE = 36.29, RMSE = 0.16 and MAE = 21%). For both
fear and behavior, large confidence intervals are produced. This indicates lots of variance between individual
model runs. Variance is reduced substantially in later stages of the simulation.

4.22 For the simulation in the district of Rostock (see Figure 24 in the Appendix), both fear and behavior are sig-
nificantly lower and show decreased fit to the empirical data (fear: MAPE = 49.24, RMSE = 0.81, MAE = 56% /
behavior: MAPE = 69.22, RMSE = 1.12, MA = 47%). The general trend shows growth in fear and behavior from
day 30 to 40. A�er day 40, fear grows stronger while behavior only grows slightly. Overall, both curves are not
face-valid, but they are more so for Aachen than for Rostock. Overall, fear and behavior show realistic macro
behavior.

Comparison with the TELL MEModel

4.23 Next, we will compare the BFG model with the TELL MEmodel in terms of their explanatory power with regard
to simulated epidemics. The performance will be evaluated in terms of the measurement errors introduced
earlier.

4.24 With the TELL ME behavior model, the fear growth starts later than with the BFG model. It peaks around day
60, then declines. The average agent behavior is initially much higher than in the BFG model, but grows only
slowly in response to increasing fear.

4.25 The performance of the TELL MEmodel is worse than the BFGmodel in several regards. The resulting behavior
(MAPE = 219.28, RMSE = 0.57, MAE = 50%) as well as the resulting infections (MAPE = 710.29, RMSE = 0.16 and
MAE = 36%) have worse fit with the empirical data than the BFGmodel. Infections grow slowly but consistently
and they are not inhibited by protective behavior: The growth rate from day 25 to 100 is steadily declining (day
25: 0.12, day 120: 0.004), the infection rates overall are low as well. The slow infection growth is manifested in
lower infection rates for day 25 (4%) in the TELLMEmodel than in the BFGmodel (7%) and, conversely, in higher
infection percentages in later stages of the simulations (day 50: 31%; day 70: 70%; day 100: 93%). Overall, the
results are less realistic and produce higherMEs for behavior and infectionswhen the TELLMEmodel is applied.
The curves di�er significantly from the BFGmodel.

Figure 12: Fear and behavior levels using the TELL MEmodel. High starting level for behavior and low peak for
both fear and behavior.
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Figure 13: Cumulative infections using the TELL MEmodel. No significant reduction of infections by behavior.

The Influence of individual behavior

4.26 We investigate the influence of individual behavior change by running themodel with non-individual behavior
change, that is, by running a simulation where each agent adopts the same average behavior value. The base-
line is provided by the AC1 BFG model (the model that runs on the map of the city of Aachen). We compute
the average behavior of all agents at every step and use the resulting time-series in the simulation runs with
non-individual behavior change.

Figure 14: Fear and behavior levels using same behavior level for all agents. Behavior is reduced strongly from
day 30 to 60.
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Figure 15: Cumulative infections using same behavior level for all agents. Infection spread is decreased strongly
from day 30 to 60.

4.27 TheMEsof the infectionspreadare similar toa regular runwith individualbehavior (MAPE=1093.10, RMSE=0.12,
MAE= 29.32%). However, the eventual infection count is lower than in theBFGmodel, with 10% fewer infections
both on day 75 (39%) and on day 100 (71%), which also results in an overall slightly lower growth rate. The fear
levels drop significantly during the period of constantly active behavior fromday 30 to 60, where the fear decay
furthermore starts to reduce the average fear.

4.28 A�er the reopening of schools and the beginning of the behavior decay (in the regular BFG model) infections
and, consequently, fear start to increase again (day 100: K = 0.03 vs. K = 0.015 for the BFG model). The
curves exhibit substantial di�erences. For the simulation with non-individual behavior change, the overall fear
and infection trend is flattened and 10% lower infections are observed.

The Influence of mediamessaging

4.29 Lastly, we explore whether the outcome of the epidemic is influenced by the implemented media model. The
media messaging in the model impacts norms and attitudes of the agents and for the purpose of investigating
their influence, we comparedmodel runs with and without media messages with regard to emerging behavior
and resulting infections.

4.30 The comparison of both configurations exposes only minimal di�erences with regard to infection, fear and be-
havior curves. The infectioncurvewithoutmediamessaginghasasimilar fitwith theempiricaldata (MAPE=920.56,
RMSE = 0.12, MAE = 11%) as the onewheremediamessaging is applied. The same is true for the infection growth
rate: It exhibits a similar trend (K = 0.2 for day 40 to 120) as in themodel withmediamessaging. The cumulative
infections without messages are slightly lower than with messages (84% at day 100 compared to 81%). Here
however, the confidence intervals overlap. The most noticeable di�erence between both models is the higher
variance in the model without messages (see Figures 25 and 26 in the Appendix).

Discussion

5.1 In the following, we discuss the performance of our model and the applicability of the behavior and media
model. We also evaluate di�erent limitations and propose improvements for future model e�orts. Naturally,
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a complex agent-based model can only test the plausibility of the hypothesized theory and will—on its own—
constitute su�icient sole evidence for the theory.

Model results

5.2 The results of our study show that our model allows the simulation of the spread of COVID-19 in di�erent loca-
tions and exposes valid macro behavior. Our model incorporates two major aspects that we described in the
related work section: human behavior change (Funk et al. 2010; Parker & Epstein 2011; D’Orazio et al. 2020) and
communication and media structures (Funk et al. 2010). The model can be easily adapted to new regions and
population densities (also referred as transferability) and generates a heterogeneous agent population.

5.3 The model parameters show that the simulation exhibits realistic infection fatality rates, infection age propor-
tions and incorporates a realistic environmental interaction e�ect. Agents possess a realistic daily routine and
show validmicro behavior when facedwith the threat of an epidemic. We calibrated themodel to the observed
trends of fear, protective behavior, and accumulated infections in Germany. The model is robust to location
changes as tested with two di�erent districts in Germany.

5.4 Regardingmodelperformance,wecansimulateapopulationof 11.000agentsduringa timespanof fourmonths
in under five minutes. We tested simulations with up to 67,939 agents which required a runtime of 7.7 hours.
Based on the tenfold increase, further expansion of the model will likely require the use of high-performance
computing.

5.5 A sensitivity analysis shows a linear increase with regard to parameters like the number of initial infected, con-
tact rate, and infection risk. This supports the validity of the model by showing realistic macro behavior on the
increase and decrease of parameters and no overly sensitive parameters.

5.6 The implementation of communication into our model did not have a significant impact on the model results.
All di�erences seen in the model with media communication are within the confidence intervals of the regular
model. We nevertheless assume that communication has at least an indirect influence on the behavior of the
population, since there is evidence for a correlation between media consumption behavior and COVID-19 risk
perception (Rivas et al. 2021; Guastafierro et al. 2021).

5.7 Individual behavior change has a significant impact on the outcome of the epidemic. Enforcing homogeneous
behavior in the model results in a mitigated infection spread, dissimilar to the observed data. This illustrates
the importance of the heterogeneous behavior of individuals for reproducing the course of a disease.

Development of behavior and fear

5.8 We positioned fear as one of the drivers for protective behavior whichmatches empirical findings from the first
wave of COVID-19 inGermany (Jørgensen et al. 2021; Stangier et al. 2021). Both the fear and the behavioral curve
closely match the observed real-world data (see Figure 11). Optimistically, it seems plausible that our model
captures an essence of the underlying psychological, behavioral mechanisms. Pessimistically, we provide a
model that is able to explain the observed phenomena qualitatively. However, a number of open question
remains:

5.9 Firstly, as fear itself is decreasing, are the other factors (i.e., norms and attitude) still su�iciently predicting
behavior? Because themodel only captures the initial phase of the pandemic, it is possible and even likely that
other factors and behavioral drivers have emerged as the pandemic has progressed. For example, Jørgensen
et al. (2021) found that self-e�icacy was a more stable predictor of behavior than fear, even at the beginning of
the pandemic.

5.10 Secondly, we have modeled fear as dependent on the observed number of new infections. As already men-
tioned, this conceptualization combined with a function of fear decay has led to a fear curve that closely cor-
responds with the empirical fear trend. Here, too, the question is if the mechanisms that generate fear remain
stable as the pandemic progresses.

5.11 Both in the COSMO survey (Betsch 2021) and the you.gov study (YouGov 2020b), the fraction of respondents re-
porting a high level of a�ective risk or fear decreased sharply at the end of the first wave which corresponds to
ourmodel. A�er, however, the size of this fraction did not correspondwith the number of infections as strongly
anymore. Instead, it remained stable as infection numbers were negligible in the summer and never substan-
tially surpassed the size it had in the first wave, even as infection numbers soared during the secondwave. This
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suggests that perceptions of risk and fear, while initially driven by infection numbers, might be influenced by
other factors as the pandemic progresses.

5.12 Certainly, as 2021 introduced the second year of the pandemic for many countries, the driving factors of the
behavior of individuals changeddrastically, withnumerous reports of fatiguewith regard to thepandemic (Ala’a
et al. 2021). The topic of pandemic fatigue itself and if it actually exists is, however, still being discussed (Reicher
& Drury 2021).

Evaluating themodel predictions

5.13 While individual behavior has been shown to be an important aspect in ourmodel, the implemented communi-
cationmodel is not of significant importance to the disease spread. By using the proposedmethod for behavior
calculation and growth and decay of di�erent agent properties, we have demonstrated that these components
improve the model behavior. They could therefore be used in further research to gain insights into the impor-
tant aspect of human behavior during epidemics. Similar infection spreading patterns as observed in Germany
are also achieved, though the scale of the infection spread could be improved.

5.14 Themutual influence of protective behavior and infections can produce a chicken and egg dynamic and result
in a wave-like pattern. Here, a reduction in fear due to fewer infections can lead to less protective behavior,
causing more infections which again increase fear (and so forth).

5.15 This cycle can also be seen in the media model. The influence of media on increased protective behavior is
modeled as short-lived. Therefore, small reductions in the infection trends are met with decreased fear and,
shortly a�er, lower protective behavior, which minimizes the impact of media overall. Refer to Figure 6 for the
underlying mechanism that leads to self-balancing. Other underlying factors like average number of contacts
or infection rates have a measurable impact on the epidemic (as seen in the sensitivity analysis) and should
therefore be targeted in further research.

5.16 The cyclic nature of epidemics was also encountered in other research. (Badham & Gilbert 2015) found that ef-
fective protective behavior can lead to fewer vaccinations because the disease spread appears to be less threat-
ening. O�en, infectious diseases occur inmultiplewaves as seen in the influenza pandemics of the 20th century
(Mummert et al. 2013), an important dynamic also observed in our model. This supports the assumption that
changes in contact patterns and human behavior, in general, are influential in multiple disease waves (Epstein
2014).

5.17 For a predictive model, a higher number of agents would provide better and more fine-grained results. Our
model in its current form provides a good basis for policy decisions, but it is less capable of being used as a
predictive model.

5.18 To optimize the predictive power of themodel for infectionmodeling, recent findings of disease states and the
transfer rates between them should be implemented. This would allow infections to be predictedmore validly
and on a larger scale.

Limitations and future work

5.19 We based our model on several assumptions and simplifications due to the complex subject being modeled.
Consequently, it deviates from reality in some places. While we o�en chose reduced complexity over a maxi-
mum in realism, it might be sensible to add features in other modeling contexts with di�erent requirements.

5.20 In the future, we plan to improve the implementation of agent behavior and schedule. As Perez & Dragice-
vic (2009) recommended, we integrated infrastructure and social structures into our model, which can also be
reused in future models. We used OpenStreetMap (OSM) data for accurate school locations. However, since a
similar feature is not o�ered forworkplaces, we placed them randomly across themap. This could be improved
by parsing di�erent workplace-related locations from OSM. A related problem is the workplace size, which we
based on an approximate bureau distribution taken from a dated and local study (Stottrop 2007) and then di-
vided by the average space per worker. For predictive modeling, more detail could be useful.

5.21 Another aspect is that the agent population lives within a closed space. Thus, phenomena such as commuting
are only indirectly consideredwhenmodeling a smaller scale (i.e., a smaller city) by placing someagents farther
away by extending their search radius for a suitable workplace.
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5.22 As already mentioned, in our model the influence of media was negligible. This is due to the self-balancing
cycle already discussed. However, this cycle is dependent on media messaging that unilaterally supports pro-
tective measures as infection numbers rise. While this is a su�icient representation of the media landscape in
early pandemic Germany, the influence of media in other locations and phases of the pandemic is clearly more
complex. For example, we did not account for misinformation or media content which discourages protective
behavior. The mechanisms of mutual influence between the COVID-19 pandemic and the so-called infodemic
need to be addressed in future modeling e�orts.

5.23 Anumber of other adjustments could bemade to the infectionmodel. Firstly, as of now,we implemented agent
immunity as binary and fixed duration, which does not correspond to the current virological findings (Robert
Koch Institut 2020b) and could be modified in future models. This could be done by implementing a chance
of infection even though immunity is active and a fade-out of the immunity e�ect against infection. Secondly,
our model does not account for vaccination as it replicates the early phase of pandemics. Including vaccina-
tions would likely lead to a dramatically changed model dynamic: On the one hand, an agent’s willingness to
be vaccinated might depend on similar factors as other protective behaviors. On the other hand, vaccination
might reduce an agent’s fear. Thirdly, currently, a one-time decision determines the transition between agent
states. That is, the agent decides on a fixed day whether to go into quarantine or not. More realistic, however,
would be to use continuous probabilities, so that the agent can decide each day whether to accept or reject
the quarantine. Overall, future work should update the infection parameters, as many settings are based on
preliminary findings due to the novelty of COVID-19.

5.24 In our model, fear results from the combination of the percentage increase in infected and infected acquain-
tances. However, the disease breaks out too early in our model compared to reality. This suggests that other
factors should be taken into account that caused the infection to break out later in reality. To better represent
themacro behavior of the agents, wewant to identify a fearmechanism that is as realistic as possible. A further
considerationwhenmodeling the influence of fear is the age-dependence of COVID-19 infection severity aswell
as health-dependency. Especially for young people, concern for others might be a stronger driver of protective
behavior than fear for themselves (Nivette et al. 2021; Fisher et al. 2021). It might also lead to di�ering patterns
of protective behavior, e.g., agents only socially distancing from other agents they perceive to be vulnerable.
Although the variability of fear in our model is mainly based on the number of an agent’s acquaintances who
are infected, this variability can also cover for aforementioned age dependencies and can be refined in further
studies.

5.25 In general, we note that the model performs best in the initial phase of the pandemic. As discussed, with the
pandemic stretching over several months, the influence of other factors like e�icacy beliefs or norms might
grow. In future work, these factors could be modeled as parts of the attitude parameter. Furthermore, social
norms are only computed during the "work" stage, foremostly to save computation time. But the influence
of work colleagues on social norms, opposing to family or circles of friends, is not quantified, and research
is needed to evaluate the relative importance of those di�erent influences. We state that the model is easily
transferable to other regions. This does however not directly equate to generalizability to other countries, since
this would also require consideration of di�erent demographic structures and social norms and behaviors.

5.26 Another factor that might be incorporated in future model e�orts, especially if they move beyond the initial
phase of the pandemic, is seasonality. Though additional measures would be necessary to eradicate COVID-
19, the warm season has been shown to slow down pandemic spread considerably (Liu et al. 2021). The early
outbreaks found in themodel canbeattributed tomanydi�erent factors, which shouldbe considered in further
research. A likely culprit is the density of the social and spatial network. The spatial network uses a true-to-size
spatial structure of a city, but reduces the number of inhabitants for computational and complexity reasons.
In the same manner, the social network uses an amount of social contacts that is grounded in empirical data.
With enough computing resources, the agent count could then be increased to reflect a more realistic density
of agents. An alternative approach would be to decrease the resolution of the network and the accompanying
complexity, though reasoning about the required scale and validity of the resulting model is out of scope for
this paper.

5.27 Overall, it makes sense to incorporate more recent developments into future models. For example, it seems
reasonable to consider that despite current relaxations at certain incidences (usually at an incidence of 100),
a kind of emergency brake should take e�ect and relaxations should be withdrawn. The results of our model
are especially relevant in light of the emergence of multiple waves of COVID-19 in Germany and Europe, which
were facilitated by a decay in adoption of protective behavior like social distancing (Rosney 2020). Because the
model uses local and global information, the average fear levels could be influenced by true global infection
cases (i.e., infections occurring in other countries). In any case, fine-grained information on trends in fear and
protective behavior could greatly aid further research on this topic, since access to regional behavior data is
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limited. Since this data is presumably already being collected (by service providers such as Google and Apple),
it could be obtained as a first step towards a more fine-grainedmobility and behavior dataset.

5.28 In a second step, fear levels of the population could be deducted from their protective behavior. Sincemobility
reports areo�enavailabledaily, this couldprovidepolicymakerswith live informationabout thee�icacyofpro-
tective behavior and allowNPIs to be established in amuchmore precisemanner instead of the o�en criticized
blanket measures. It could also be used to gain information about the current stage of the threat perception
process (i.e., exponential growth or decay phase), and act accordingly.

5.29 An ever-increasing factor of importance for the fight against COVID-19 was the development of vaccines, which
has been conductedwith overwhelming speedanddeeply influences themechanismsof fear andbehavior that
we investigate. However, vaccinesonly come intoplayduring later stagesof anepidemic, having requiredabout
eight months for their development. We however focus on the initial stages of a pandemic, where novelty and
fear are important factors. While at this time, vaccinations do not play a role yet, the influence of vaccinations
would likely influence the model in a two-fold way: Firstly, getting vaccinated is another possible protective
measure for which adoption is influenced by fear and norms. Secondly, the vaccination status of the agent and
in the population is in turn likely to a�ect fear and attitudes towards protective behavior. However, we funda-
mentally aim to show that fear plays an important role at the beginning (that is, the firstmonths) of a pandemic
and investigate possiblemechanisms for its influence, but do notwant to speculate over its further importance.
This is alsowhy thisworkdoesnot serve as apredictivemodel, but rather as an impulse for policy recommenda-
tions for future models of future pandemics. We, therefore, reproduce the initial phase of the pandemic rather
thanpredict theongoing situation, andemphasize learning for the initial phaseof other pandemicswhere there
exists no vaccine.

5.30 With regard to the complexity of this model, Occam’s Razor can surely be applied at many angles—how much
influence on behavior do concepts like family structure, news, transport, social contact rates actually exert?
We intended thismodel as an integrated concept of di�erent components, foremostly based on a given level of
realism. Next steps could be taken for finding out the essential components by their stepwise removal and eval-
uation of prediction performance. This could be approached with a Lasso-Regression mindset, progressively
shrinking the amount of concepts included.

5.31 Our work as proof of concept enables future studies to build up on our findings and to explore possible exten-
sions in terms of fear complexity, vaccination status and di�erent degrees of interventions.

Conclusion

6.1 Our proposed behavioral model produces realistic results by using the Rescorla-Wagner model based on rec-
ommendations of Epstein (2014) and amodification of the TELL ME behavioral model (Badham& Gilbert 2015),
using fear as central factor in determining protective behavior. We simulated the spread of COVID-19 with an
agent-based model and took individual protective behavior and media influence into account. We incorpo-
rated real-world demographic data, social structures and infection stages in the model. Our model underlines
that agent-basedmodels are a promising technology for epidemiological modeling and can help planning pre-
ventive measures andmitigate disease spread.

6.2 Fear wasmodeled as an important factor in the adoption of protective behavior. With the given dynamics, fear
can rapidly decay if the stimulus declines, thereby reducing protective behavior, similar to empirical data. Fur-
thermore, individualbehaviorplaysan important roleandshowshowonlya fewdeviations fromrecommended
protective behavior can fuel infection growth. The mutual influence of both factors can lead to self-stabilizing
behavior, highlighting the importance of underlying base-rates of infectivity rather than short-lived increases
to protective behavior.

6.3 The model could be used to inform policy decisions regarding individual behavior and for the further study of
the relation of fear and protective behavior. We found that the applied media model had no influence on the
outcome of the epidemic, while consistent individual behavior across the population is identified as impor-
tant factor with regard to the e�ectiveness of non-pharmaceutical interventions. To use our simulation as a
predictivemodel, it requires further modification to better reproduce infection parameters and spread, and an
increased number of agents for a more realistic simulation.

6.4 Together with the insights on fear extinction, this puts the spotlight on ways to ensure consistent and e�ective
individual behavior during an epidemic on the one hand, and research on coping with fear extinction and the
accompanying decay of protective behavior on the other hand. We encourage studies which focus on fear ex-
tinction in the short and long term, and how other behavioral mechanisms could be used to ensure consistent
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and widely adapted protective behavior. By furthering research in the proposed directions, communication
and mitigation strategies could be improved, which could ultimately help with reducing the impact of further
waves of COVID-19 and possibly of other epidemics yet to come.

Model Documentation

Ourmodelwas implemented inJulia 1.5usingapatchedAgents.jl 3.0 library (Datseris et al. 2021), and the source
code for themodel and the required libraries with all simulations presented in this article can be found at http
s://github.com/digitalemuendigkeit/COVID19-ABM and at https://osf.io/axv6q/. The repository
also contains a dockerfile for simple reproducibility.

Appendix: Additional Figures and Tables

Figures

Figure 16: Progressionof thedisease spread through themodel. Nodesgrowbiggerwith theamountof infected,
di�erent node colours show heterogeneous behavior.
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Figure 17: Graph network (above) and the spatial structure it represents (below). An example daily route is
highlighted in the graph network.
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Figure 18: (a) Distribution of attitude adopted from YouGov (2020a) (b) Distribution of workplace sizes adopted
from Stottrop (2007) (c) Function for daily contacts per age adopted from Mossong et al. (2008) (d) Maximum
workplace size per agent wealth.

Figure 19: (a) Fear growth function (b) Fear extinction function.
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Figure 20: (a) Decay of attitude towards the original attitude (b) Decay of norms over time (c) Growth function
for both norms and attitude.

Figure 21: Fear and behavior levels during the unbounded growth.

JASSS, 25(1) 3, 2022 http://jasss.soc.surrey.ac.uk/25/1/3.html Doi: 10.18564/jasss.4723



Figure 22: Cumulative infections in the district of Aachen. Cases grow unbounded by protective behavior.

Figure 23: Fear and behavior levels in the district of Aachen. Both trends show more variance, but the overall
trend is similar to the real-world data and city of Aachenmodel.
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Figure 24: Fear and behavior levels in the district of Rostock. Both trends are noticeably lower than the real-
world trend.

Figure 25: Fear and behavior levels without media messages.
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Figure 26: Cumulative infections without media messages compared to the regular model.

Tables

Model Property Calibrated Value Min Max Increment
Contact Rate Contacts ∗ 0.7 0.5 1.5 0.1
General Infection Risk Modifier Risk ∗ 0.8 0.1 1.5 0.1
General Infection Risk (Behavior) 0.0366 0.001 0.1 0.1-0.001
General Infection Risk (No Behavior) 0.095 0.001 0.1 0.1-0.001
Infection Risk Quarantine (Behavior) 0.0063 0.001 0.1 0.1-0.001
Infection Risk Quarantine (No Behavior) 0.0163 0.001 0.1 0.1-0.001
Infection Risk Travel (Behavior) 0.0366 0.001 0.1 0.1-0.001
Infection Risk Travel (No Behavior) 0.095 0.001 0.1 0.1-0.001
Fear Growth 100 ∗ 2.2∗ 0.5 2 0.1

1-e-(new cases*pers cases)

Fear Decay fear ∗ e-(time/150) 0 5 0.1
Fear Decay Trigger If 3 days growth < 104% 100 120 1
Fear Decay Delay 3 days 0 5 1
Behavior Activation Threshold Behavior > 60 50 120 5
Modifier Fear Influence on Behavior Fear ∗ 1 0.5 1.5 0.1
Attitude/Norms Growth property∗

1+e-scaled property
Attitude/Norms Growth Scale Scale(0, 170, 0, 3) (0,2) (0,6) 1
Attitude Decay attitude∗ 6 1 1

e-di�erence(old att,new att)/2
Attitude/Norms Decay Scale Scale(0, 158, 0, 2) (0,1) (0,6) 1
Norm Decay norm ∗ e-(time/340) 500 10 10

Table 3: Overview of the calibrated model properties.

A table with the results is shown at Table 4. By increasing and decreasing the amount of contacts per agent, the
model reacts with mostly linear changes to the percentages of infected agents.
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Parameter Day 25 Day 50 Day 75 Day 100
Baseline 7.68 21.2 52.29 86.94
Contacts 0.45 3.38 21.2 39.63 67

0.6 4.97 25.62 42.83 70.1
0.65 4.62 25.5 42.82 72.11
0.75 6.37 34.53 54.9 82.83
0.8 6.24 35.43 55.93 86.77
0.95 9.74 43.44 66.6 93.53

Infection Risk 0.55 4.07 23.23 40.14 68.15
0.7 7.73 28.4 46.84 75.92
0.75 7.92 30.16 48.68 82.17
0.85 6.18 31 50.44 81.47
0.9 9.05 36.32 55.83 87.58
1.05 11.48 44.81 68.77 95.31

Add Infected 5 14.61 37.05 57.1 89.49
10 16.91 38.78 60.51 90.97
15 24.28 44.24 67.51 93.71
25 26.9 45.31 68.05 93.95
50 33.68 50.42 71.76 95.89

Table 4: Sensitivity analysis based on the percentage of infected in the population at the given day.

Notes

1This behavior is consistent with the mathematical model of Kermack-McKendric’s SIR model.
2and are therefore subject to sample selection bias
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