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1 Lübeck University, Ratzeburger Allee 160, 23562 Lübeck, Germany
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Abstract. We investigated the effect of varying the level of cooperation
in a smart charging agent (SCA) on user perception and behavior. Our
study involved manipulating the SCA’s cooperativeness by varying its
degree of automation and the amount of information sharing with the
user and measuring effects on changes in user behavior, perceived goal
alignment, the user’s awareness of the SCA’s information processing,
and perceived cooperativeness. Our hypothesis that a lower degree of
automation of the SCA would increase human-agent cooperation was not
supported by our results. Instead, participants in the high-automation
condition chose a later charging endpoint more often, implying greater
cooperation. Our hypothesis that a higher amount of information shared
by the SCA would increase human-agent cooperation was only partially
confirmed. Cooperation led to a more positive user experience, but the
correlation was only moderate to strong. The study shows the limitations
of using the degree of automation as a sole measure of human-machine
cooperation and highlights the need to explore other operationalizations
of human-machine cooperation. Further research is needed to explore
other scenarios and variations in the information provided to the user to
better understand human-machine cooperation in the context of smart
charging.

Keywords: Human-Machine-Cooperation · Human-Machine-Interaction
· Smart Charging · Battery Electric Vehicles · Demand Side Management.

1 Introduction

The transition to utilizing renewable energy sources, such as wind and solar power,
is crucial for achieving a sustainable energy system. However, the integration
of these sources into the power grid poses significant challenges due to their
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inherently variable nature. To address these challenges and ensure a stable power
grid, it is necessary to implement measures such as decentral energy generation
and storage, as well as flexibly adjusting energy demand, also known as demand-
side management. These measures will not only stabilize the power grid but also
enable greater penetration of renewable energy into the energy mix. The idea of
demand-side management specifically is to alleviate strain on the power grid by
incentivizing large energy consumers to shift consumption to periods of increased
renewable energy availability and decreased energy demand [6,1]. Furthermore,
the immediate use of renewable energies at their time of availability cannot only
lead to more efficient use of energy resources at the energy system level but also
at the consumer level [20].

An energy consumer unit that is of particular interest for demand side
management is the battery electric vehicle (BEV) since it has a large storage
unit as well as a high energy demand that can easily be flexibilized through
approaches like smart charging. With smart charging, consumers can adjust the
charging of their BEV in real time to electricity prices and availability. This
process is typically controlled by an automated system (agent), which relies on
user preferences and other information, such as energy availability, to optimize the
process (e.g., [18]). Therefore, smart charging cannot only lead to a stabilization
of the power grid and a reduction in CO2 emissions but also in lower costs for
the consumer [11].

So how do we design a smart charging agent (SCA) that encourages people
to regulate their charging behavior to ensure an efficient allocation of energy
resources? We suggest that a cooperative approach to system design might help
support the effective joint regulation of energy and other resources such as time,
information, or comfort. Prior work shows that human-machine-cooperation not
only copes with the shortcomings of many current automation approaches but
also enables greater flexibility in the shared action and, all in all, enhances the
joint performance of the human and the system [2,16,25].

2 Background

Comparative-cognition research has demonstrated a unique motivation for humans
to collaborate. Tomasello and Vaish [26] state that “human social interaction and
organization are fundamentally cooperative in ways that the social interaction
and organization of other great apes simply are not” (p. 239). In recent years,
several authors tried to utilize this inherent motivation of humans to cooperate
to facilitate human-machine interaction (HMI). The construct of human-machine-
cooperation has been discussed for many different use cases, such as driver
assistance [17,27,19] or human-robot interaction [9]. However, there is no full
consensus on how to define cooperation, and different authors propose different
operationalizations of cooperation for different contexts [2,15,28,30]. Moreover,
while the effects of cooperative automation design have been investigated in many
human-technology contexts, as of writing, we are not aware of any study that
has investigated a cooperative approach in the domain of smart charging.
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2.1 Formalizing cooperation

There is a multitude of theories and models on cooperation from different disci-
plines such as social psychology [13], philosophy [3], and human factors [4,5,7,10,14].
In the following, we conceptualize cooperation based on the similarities between
these theories.

How to design a cooperative SCA? Klein et al. [14] propose four requirements
for successful cooperation between a human and an automated system: An
agreement to work together, a common ground, mutual directability, and mutual
predictability. For this study, we manipulate the latter two aspects, directability
and predictability, as we assume the other two prerequisites are already fulfilled
by the design of the SCA.

Previous work in the context of automated driving has often operationalized
directability by the degree of automation of the system. Several studies find that
participants report a higher feeling of safety, pleasure, and trust when interacting
with a cooperative system with which they share the task of driving compared
to a higher automated system [17,27]. On the other hand, research in artificial
intelligence shows that the perceived predictability of the system can be promoted
through additional information on the inner workings of the system, which also
promotes trust [12,21].

How to measure successful cooperation between humans and the SCA?
We propose measuring the effects of our SCA manipulation as follows. First,
we assess the perceived quality (perception) of the human-SCA interaction with
respect to the following aspects: (1) goal alignment, (2) system understanding,
and (3) perceived cooperativeness. Second, we observe induced behavioral changes
in the human charging patterns (behavioral change). In addition, we measure user
experience as a function of the user’s perceived cooperativeness of the interaction.

Goal alignment. It has been proposed that the need for cooperation between two
or more agents arises from an interdependence that results from shared goals or
overlapping intentions [3,4,5,10,13,14,26]. Hence, to measure cooperation on a
motivational (intentional) level, we assess users’ perceived goal alignment with
the SCA.

Understanding of the system. Multiple theories emphasize the importance of
shared representation, knowledge, and beliefs between the interaction part-
ners as well as some degree of mutual predictability and reliability in coop-
eration [3,5,7,10,13,14]. To measure cooperation on a cognitive level, we assess
the users’ level of awareness and understanding of the system and its information
processing.

Perceived cooperativeness. We measure if the interaction with the SCA was
perceived as cooperative by the user. To that end, we developed a five-item-scale
to measure perceived cooperativeness specifically.
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Behavioral change towards a shared goal. Last, according to Klein et al. [14],
joint action entails “one or more participants relaxing some shorter-term local
goals in order to permit more global and long-term goals to be addressed” (p.
6). For the context of smart charging, this can be understood as users giving
up some flexibility and shifting their charging window to times of high energy
availability to permit demand side management. Here, we measure cooperation
on a behavioral level by assessing whether users shift their charging window upon
request.

2.2 Hypotheses

In this study, we set out to examine the following three hypotheses:

– H1: A lower degree of automation should increase human-agent-cooperation
(behavioral change and perception).

– H2: Increasing the amount of shared information should increase human-
agent-cooperation (behavioral change and perception).

– H3: An increase in perceived human-agent-cooperation should lead to a
better general user experience.

3 Method

3.1 Sample

Participants were recruited through mailing lists and social media. The experiment
was conducted via the online survey platform LimeSurvey. All participants were
required to speak German fluently. After excluding those participants who did not
complete the questionnaire, those who took an unusually long time to complete
the questionnaire, and those who showed no variance in their responses on any
of the pages of the questionnaire, the final sample consisted of 91 participants
(29% female) with an average age of M = 42.3 (SD = 12.5). In the sample, 76%
had driven a BEV before, and 53% had prior experience with driving a BEV on
a regular basis.

3.2 Experimental Design and Scenario

We conducted an experiment with a 2x2 between-subject design. Participants
were presented with scenarios that included interactions with an SCA that
varied in the degree of automation (low vs. high) and the amount of information
sharing (low vs. high). In the beginning, participants were instructed to imagine
themselves in the situation described in Fig. 1.

Next, participants were presented with a message from the SCA that asked
them to prolong their charging window to increase the share of self-produced
power. The message differed based on which experimental group participants
were in.
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Fig. 1. Introduction to the scenario presented to every participant.

degree of automation

amount of information
shared
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Fig. 2. Research design. Manipulated variables are shown in orange, measures variables
are shown in green (behavioral variable) and blue (subjective variables).
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3.3 Experimental Manipulation

For an overview of manipulated and measured variables see Fig. 2.
First, we manipulated the level of cooperation of the SCA through the

system’s degree of automation (directability). The degree of automation was
altered according to the levels of automation of decision and action selection by
Parasuraman [22]. Participants in the low-level condition got a pop-up message
from a level three agent that suggested two alternative charging endpoints while
participants in the high automation condition interacted with a level six agent
that automatically prolonged the charging window of the user and gave them a
restricted time to veto (see Fig. 3).

Fig. 3. Messages from two smart charging agents (SCA) showing different levels of
automation.

Second, we manipulated the level of cooperation of the SCA through the
amount of information shared with the user (predictability). Participants in
the low-information group only got information about the expected share of
photovoltaic power for their next charging window, whereas participants in the
high-information group got additional information on the weather forecast and
the projected amount of photovoltaic power (see Fig. 4).

3.4 Measures

To measure the effects of our independent variables on human-agent-cooperation,
we assessed the following metrics based on our formalization of cooperation
described in Section 2.1.
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Fig. 4. Manipulated interface providing different levels of information from the smart
charging agent (SCA).

To assess participants’ perceived goal alignment, we administered the con-
flict subscale of the Human-Machine-Interaction-Interdependence Questionnaire
(HMII, [29]). A low score on this scale would indicate a high perceived goal align-
ment. Further, we measured participants’ understanding of the system through
the Subjective Information Processing Awareness Scale (SIPA, [24]). SIPA de-
scribes the experience of being enabled by a system to perceive, understand and
predict its information processing. A low score on this scale would indicate a low
awareness and understanding of the system and its information processing. Last,
to quantify behavioral changes, we measured whether participants prolonged
their charging window.

As an additional measure for human-agent cooperation, we measured the
perceived cooperativeness by a self-developed scale. The items were generated in
a workshop with six students. As a basis, participants of this workshop got an
introduction to various theories on cooperation and joint action research as well
as examples of everyday interactions with automated systems. The scale uses a
6-point Likert response scale. A translation of the German items can be found in
Fig. 5.

Additionally, we used the User Experience Questionnaire (UEQ, [23]) to
measure participants’ user experience through perceived attractiveness, pragmatic
quality, and hedonic quality of the agent. We further surveyed the power and
information certainty (human to system) sub-scales from the HMII [29] to check if
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Fig. 5. The items of the perceived cooperativeness scale.

our manipulation of the degree of automation and amount of shared information
was successful.

4 Results

4.1 Manipulation check

Participants in the low-automation condition reported significantly higher per-
ceived power in the situation (U = 1452, pone-tailed < .001) with a medium effect
size r = .37. We conclude that the manipulation of the degree of automation was
successful. For the variation of the amount of information shared, there was no
significant difference in the reported information certainty (human to system)
between the low and high amount of given information condition (U = 984,
pone-tailed = .369). Therefore, results regarding the difference in the amount of
given information should be regarded with caution.

4.2 Regression analysis

To examine our first and second hypotheses, we conducted four different regression
analyses for each of our dependent measures.

The first analysis was performed for the variable behavioral change measured
by the chosen charging endpoint. Since the charging endpoint variable was not
normally distributed, we transformed this measure into a dichotomous variable
on whether participants choose to prolong the charging window (1) or not (0). We
performed a binomial logistic regression (see Table 1) on the respective data. We
found that a higher degree of automation led to a significantly higher probability
of changing the behavior, i.e., adjusting the charging window.

For the other three measures, we calculated linear regression analysis as the
data fulfilled all statistical requirements. We did not find an effect of the experi-
mental manipulations on perceived goal alignment, as measured by the HMII’s
conflict subscale (R2 = .016, p = .483, Table. 2, Conflict regression), nor on the
perceived cooperativeness (R2 = .013, p = .564, Table. 2. Perceived cooperativeness
regression). The regression model for the variable system understanding (SIPA)
showed an effect for the amount of shared information (R2 = .068, t = 2.48,
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Table 1. Results of the binomial logistic regression (OR: odds ratio).

Parameter Estimate Standard
error

z-value p-value
(two-
tailed)

Standardized
OR

95 % CI for
OR

Intercept −3.09 1.12 −2.77 .006 1.68 [0.99, 2.98]
Degree of automation 2.80 0.55 5.09 <.001 4.08 [2.45, 7.31]
Amount of information −0.39 0.53 −0.73 .465 0.82 [0.48, 1.39]

p = .046), Table. 2, SIPA regression, such that a higher amount of information
led to a better system understanding.

Table 2. Linear regression results for conflict, SIPA, and perceived cooperativeness.

Parameter Standardized
beta coefficient

Standard
error

t-value p-value
(one-
tailed)

Conflict regression
Degree of automation 0.122 0.12 1.16 .125
Amount of information 0.045 0.12 0.43 .665

SIPA regression
Degree of automation -0.035 0.19 -0.35 .367
Amount of information 0.256 0.19 2.48 .008

Perceived cooperativeness regression
Degree of automation -0.084 0.19 -0.79 .215
Amount of information 0.072 0.19 0.68 .250

4.3 Correlations with reported user experience

In the UEQ, participants overall reported a slightly positive attractiveness (M =
0.98, SD = 1.07), hedonic (M = 0.79, SD = 0.89), and pragmatic quality for
the SCA independent of the experimental condition (M = 1.22, SD = 0.87).
To examine our third hypothesis, we calculated correlations between our four
measures of cooperation and the three subscales of the UEQ.

For the variables charging endpoint (behavioral change) and the HMIII conflict
subscale (perceived goal alignment), Kendall’s Tau was calculated. For SIPA and
perceived cooperativeness, Pearson correlation coefficients are reported. All p-
values are one-tailed. Results are shown in Table 3.

5 Discussion

We investigated the effect of varying the level of cooperation in a smart charging
agent (SCA) on user perception and behavior. We manipulated the SCA’s
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Table 3. Correlations between measures of cooperation and reported user experience.

Charging time Conflict SIPA Perceived Cooperativeness

Attractiveness .05 -.05 .38*** .69***
Pragmatic quality .04 -.03 .57*** .61***
Hedonic quality .04 -.15* .28** .64***

*p < .05, **p < .01, ***p < .001

cooperativeness by varying its degree of automation and the amount of information
sharing with the user and measured effects on changes in user behavior, perceived
goal alignment, the user’s awareness of the SCA’s information processing, and
perceived cooperativeness, measured by a five-item scale developed for the present
study.

5.1 H1: A low degree of automation increases cooperation

We hypothesized that a lower degree of automation of the SCA would increase
human-agent cooperation. However, in three out of four analyses, the degree
of automation had no significant effect on our measures of cooperation. For
our behavioral variable, participants in the high automation condition chose
a later charging endpoint more often than participants in the low automation
condition. In other words, participants behaved more often cooperatively in the
high-automation condition, which is contrary to our hypothesis.

5.2 H2: A High amount of information shared increases cooperation

We hypothesized that a higher amount of information shared by the SCA should
increase human-agent cooperation. However, in three out of four analyses, the
amount of shared information had no significant effect on our measures of
cooperation. There was a small positive effect on the amount of information
shared on reported SIPA. Our second hypothesis was, therefore, only partially
confirmed.

5.3 H3: Cooperation leads to a more positive user experience

Two of the four cooperation measures correlated moderately to strongly with the
three subscales of the UEQ (SIPA and perceived cooperativeness, see Table 3),
indicating that higher cooperation (perception measures) led to a more positive
user experience. There was a small negative correlation between our measure of
perceived goal alignment and the hedonic quality of the SCA. None of the UEQ
subscales correlated with our variable of cooperative behavior, i.e., the chosen
charging endpoint. Our third hypothesis was, therefore, only partially confirmed.
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5.4 Theoretical and practical implications

Cooperation is often operationalized by the degree of automation of a system,
which is usually attributed to positive effects (such as higher reported pleasure
and trust [17,27]. However, we could not replicate equivalent effects in our study.
Most literature on human-automation cooperation focuses on use cases in which
systems become more automated (such as manual driving developing towards
autonomous driving), and users are expected to give up control in the future.
This cannot be applied as easily to the use case of human-agent cooperation in
smart charging, as described here. In the present scenario, users arguably keep
more responsibility because they remain involved in the decision process also in
the highly automated condition.

Additionally, charging your car might satisfy less hedonic needs compared to
driving your car [8]. Thus, users might not want to stay in the loop and share
the task as much compared to other use cases.

5.5 Conclusion and outlook

We present a first study on human-machine cooperation in the context of smart
charging. We developed a theoretically driven concept for designing different
levels of cooperation in an SCA and for investigating its effect on the user.
Contrary to our hypothesis, we did not find a positive effect of lower automation
on our measures of cooperation (perception and behavior change). Instead, a
high degree of automation even led to a higher probability for the user to shift
the charging window, which we interpreted as a higher willingness to cooperate.
We discussed that one potential reason for this result might be that the degree
of automation as defined by Parasuraman [22] may have different implications
in the context of smart charging compared to autonomous driving. It may be
conceivable that human-machine cooperation on eye level has requirements that
are different from those found in automation, and new concepts and approaches
are required. Thus, future work should explore other operationalizations of
human-machine cooperation within this context, focusing, for example, on shared
responsibility [16].

Furthermore, the degree of information shared by the agent did hardly affect
cooperation measures. The manipulation might not have had the intended effect
overall. Here, a stronger variation in the provided information to the user might
yield a higher effect. Another potential limitation might arise from the between-
subject design since participants had no comparison for their assessment of the
SCA. In addition, the study displayed only one use case (meeting with friends).
A scenario with a more urgent appointment could have led to different user
reactions. Taken together, we provide new insights for future research on how to
design an SCA for human-machine cooperation successfully.
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12. Jacovi, A., Marasović, A., Miller, T., Goldberg, Y.: Formalizing trust in artificial
intelligence: Prerequisites, causes and goals of human trust in AI. In: Proceedings
of the 2021 ACM Conference on Fairness, Accountability, and Transparency. pp.
624–635 (2021)

13. Kelley, H.H., Thibaut, J.W.: Interpersonal relations: A theory of interdependence.
Wiley, New York, NY (1978)

14. Klein, G., Feltovich, P.J., Bradshaw, J.M., Woods, D.D.: Common Ground and
Coordination in Joint Activity. Organizational Simulation 53, 139–184 (2005)

15. Kraft, A.K., Maag, C., Baumann, M.: How to support cooperative driving by HMI
design? Transportation Research Interdisciplinary Perspectives 3, 100064 (2019)
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