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At RWTH Aachen University the research cluster “Production Technology for High-Wage Countries” 
engages in advancing the polylemma of production. In many cases engineers and physicists develop 
simulation tools, machine interfaces, and data exploration tools but lack essential training in Human-
Computer Interaction. Without proper training the interaction of visual, cognitive and task complexity 
can lead to solutions that are valuable only to the developers themselves, but are not usable without 
extensive training. We show the most critical ergonomic factors for developing software in a scientific 
engineering setting that focuses on complex problems. We present an overview of usability methods 
as well as complexity reduction methods and their applicability in engineering software design. We 
present an exemplary study for the case of supply chain management, where the approaches were 
successfully integrated into a serious game not only serving as an investigatory tool but also as a 
training utility for supply chain managers. 
 
Practitioner Summary: This overview aims to be used as an entry point for engineers interested in 
usability and its applicability from a simulations and visualizations point of view. Factors that create 
complexity and how they can be reduced are presented. Usability methods are evaluated in regard to 
their applicability. 
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1. Introduction 

Industry 4.0 or the Internet of Things describes a paradigm shift in production technology. It refers to the shift 
of awareness and responsibility from the production process to the product itself. Every product component 
in the production process has an identity and instructs the machines what needs to be done to it and where it 
needs to be shipped. This shift enables processes that allow mass customization, production as a service, 
and feedback from products in the market (e.g. usage statistics, failures, required maintenance, etc.). In 
order to facilitate the full potential of industry 4.0 new processes and tools need to be developed, allowing 
innovative production processes. Often, existing processes either aim at scale effects using highly planned 
processes (i.e. lots of cheap identical products) or scope effects (i.e. very few expensive individual products). 
Combining these effects is a core dilemma in production. 

At RWTH Aachen University the research cluster “Production Technology for High-Wage Countries” 
engages in advancing the so-called polylemma of production. Engineers from forty institutes collaborate on 
ensuring production in high-wage countries like Germany by addressing the scale-scope dilemma and the 
plan-value dilemma. Solution hypotheses include generative processes, additive manufacturing, self-
optimization, technology integration, and data transparency (Brecher et al. 2012).  

Many of the approaches used in the cluster of excellence combine planning and cybernetic methods (i.e. 
self-optimizing processes) in order to deal with the complexity of the fluctuating supply chains and fluctuating 
customer orders. The increasing demand for product quality under fluctuating quality of raw material makes 
intensive simulations necessary to create stable and reliable processes. These innovative processes can 
address product aspects in every phase of the production process-chain. They can work as early as in 
material design (e.g. metallurgy simulations for hot rolling, casting, annealing, carburizing & joining), 
manufacturing (e.g. laser cutting), assembly (e.g. robot-based large part handling, assembly of focusing 
lenses), or as late as in logistics management (e.g. shop-floor logistics, supply chain management). Most of 
these processes require human interaction with the system – either to interpret simulation data or to be the 
final decision maker in self-optimizing processes. Since the process data behind these interactions is often 
complex (i.e. large amount and highly connected) visualizations or decision support systems based on these 
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data easily become complex as well. The worker remains the most flexible component in this cyber-physical 
system and his interface becomes the key component of industry 4.0 settings (Gorecky et al. 2014). The 
rising field of Human-Computer Interaction in Knowledge Discovery in Databases (HCI-KDD, Holzinger 
2013) plays a critical role when dealing with large amounts of multidimensional data and semi-structured 
data in a human understandable way. 
 
2. Complexity in Human-Computer Interaction 

Human beings interface with machines through various channels. Vision, hearing, and sometimes touch are 
used to communicate from machine to computer. Manual interaction, touch, voice, gesture, gaze, and 
sometimes even brain interfaces are used to communicate from human to machine (Kortum 2008). 
Nonetheless, these bottlenecks are only regarded as superficial from an HCI perspective. When looking at 
Big Data (i.e. large amounts of highly complex, multi-dimensional, highly unstructured data, e.g. medical 
records or logistics data) beyond these shallow interfaces, the communication between the deep interfaces 
must be addressed. Mapping from data to mental models (Johnson-Laird 1986, Calero Valdez et al. 2010) or 
understanding of data is far harder than optimizing user interface (UI) element placing. In order to 
understand how these problems should be addressed we first look at aspects of complexity that matter in 
designing a system. 

 
2.1. Visual Complexity 

Visual complexity refers to the complexity of information presented via the visual system. Early approaches 
to describe visual complexity stem from the field of Gestalt psychology (Köhler 1947) and try to describe the 
complexity of simple visual forms. Gestalt psychology bases on the Prägnanz law, which states that the 
organization of knowledge will converge to the best possible solution under any given condition. It aims at 
coding (not only) visual precepts with maximum simplicity or maximum homogeneity according to higher 
order variables in perception. The simplest explanation for any given set of percepts triumphs. Visual forms 
in particular are either represented as a set of single visual forms or as visual codes. The simplicity principle 
investigated by Hochberg (1957) demonstrated that forms change in memory according to their Gestalt. 
Defining differences in a relevant dimension are exaggerated while irrelevant differences diminish over time.  

Later approaches to visual complexity often draw from the field of information theory, particularly from 
Shannon’s information entropy (1948). The amount of information is measured by the deviance of the 
content from any random content. This means that forms that carry more information are more complex. In 
order to create complex forms more instructions are required than for simple forms. Experiments show that 
simpler forms are easier to learn (less information), while complex forms are easier to discriminate (more 
information). On the other hand, more complex forms require more reaction time in recognition tasks 
(Mavrides & Brown 1969).  

J.J. Gibson (1979, cited from 2013) reframed visual complexity by integrating higher order invariants in 
perception. Often (algorithmically) seemingly more complex visual input can be integrated into a simpler 
explanation when all individual percepts support a unique perceptual hypothesis. The complexity of a given 
visual stimulus can thus change (in this case decrease) once a unifying interpretation of the sensory data is 
available (i.e. visual chunking). Suddenly the picture becomes clear and what was seen cannot be unseen. 

When information needs to be conveyed, the given goal is often important in perceived visual complexity. 
Reaction times in one-dimensional search tasks (e.g. find the red O among green Os) are significantly faster 
than multi-dimensional search tasks (e.g. find the red O among green Os and red Xs). One dimensional 
visual search tasks often benefit from the pop-out effect (Treisman & Gelade 1980) allowing for parallel 
processing. The time for finding a single red X among green Xs is independent of the amount of green Xs in 
the visual array. This effect has been demonstrated for various dimensions of visual perception (e.g. line 
orientation, luminance, color, curvature, number, line intersection, figure closure, flicker, motion direction, 
lighting orientation) and can be learned for further dimensions by feedback training. An exhaustive review on 
visual complexity theory can be found by Donderi (2006). 

 
2.2. Task Complexity 

Even if the perception of visual inputs worked perfectly, the operations required for the perceived data 
could be complex. Task complexity has been found to influence performance and behavior (Liu & Li 2012). 
The ever-increasing complexity of tasks in ever-increasing dynamic settings, even when supported by 
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computerized tools, becomes increasingly problematic (Liu & Li 2011). Payne (1976) found that participants 
chose worse strategies when faced with tasks of higher complexity (i.e. multivariate decision making). 
Participants did not evaluate multivariate aspects, but chose to eliminate options according to singular 
aspects. The complexity of a task moderates the goal-setting effect (i.e. improved perceptual performance 
when a goal is set) and reduces the effect in complex task scenarios. Task complexity is assumed to 
influence mental workload (Jacko and Ward 1996) and thus reduce performance. Often task complexity is 
seen as an interaction of task, task performer, and task environment. Nonetheless, Liu and Li (2012) stress 
that task complexity (or objective task complexity) should be seen as different from task difficulty (subjective 
task difficulty, cf. Kieras & Polson 1985). They identify five components that contribute to task complexity. 
The goal or output factor influences complexity as in more clarity and redundancy decrease complexity, 
while more, conflicting, and changing goal definitions increase task complexity. The input factors relate to 
stimuli and their influence on complexity. Again, clarity and redundancy decrease task complexity, while 
diversity, inaccuracy, conflict, unstructured guidance, and non-routine events increase task complexity. 
Additionally, a mismatch of cognitive and stimulus presentation increases task complexity. Interestingly, the 
quantity of stimuli shows a U-shaped influence on task complexity. Too little input is not helpful, too much is 
overwhelming. Process factors relate to the processes/paths that lead from input to output. Again, clarity 
reduces complexity as well as repetitiveness (i.e. training). Task complexity increases when many possible 
paths exist, which require many steps, if path interactions conflict, and when either cognitive of physical 
requirements for any action increase. Time factors increase complexity, whenever things have to be done 
concurrently or under time pressure. The presentation influences complexity in various ways (hence the 
section on visual complexity). Heterogeneity increases and compatibility decreases task complexity.  

Liu and Li (2012) derived ten dimensions of complexity that all indicate high task complexity – size, 
variety, ambiguity, relationship, variability, unreliability, novelty, incongruity, action complexity, and temporal 
demand.  

 
2.3. Cognitive Complexity 

Beyond these perceptional and task-related limitations cognitive limitations apply. Human beings have 
evolved to deal with the complexity of social relationships of small tribes like Machiavellian structures (hence 
Dunbar’s Number, cf. Dunbar & Dunbar 1998). The necessities for cognitive complexity derive mostly from 
understanding social relationships (e.g. kinship, hierarchy, coalitions). This allows humans to effectively deal 
with relationships that are similar to these social relationships.  

Human knowledge and reasoning can be seen as relational knowledge processing, which underlies its 
own limitations. Humans can process quaternary relations at maximum (Gross & Fox 2009, Halford et al. 
2006). Simpler relations require less cognitive complexity. Relations are more suitable to human processing 
when they are transitive, symmetric or have a lower degree (e.g. unary or binary relations). Relations that 
are too complex are segmented (i.e. broken into smaller relations) and then processed sequentially and 
serially. If relations do require a higher degree, information can become lost in segmentation. Relation 
processing is important for planning tasks (Halford et al 1998), categorization of stimuli (Jameson & Gentner 
2009), language processing (Andrews et al. 2006), and knowledge acquisition. 

Typical for human intelligence is the autonoetic consciousness, allowing humans to see themselves in 
the past, present, and future. This allows planning, but has a bias for an over-allocation of resources in the 
future (future-me will have to deal with it), which needs to be considered when allowing multi-phasic time-
deferred actions. 

The concept of narrative intelligence was coined by Turner (1996). It assumes that humans are better at 
understanding something when it has a narrative to it. Stories are easier to understand. And some would 
even say, “[u]nderstanding narrativity is argued to be crucial to understanding human cognition” (Barett et al. 
2007). A problem is that we also assume the intentional stance (Dennet 1989), expecting intentions behind 
occurrences out of a cognitive bias.  

Uncertainty, which is always present in important situations, can influence how judgment is cast in 
situations where information is unavailable or possibly incomplete (Tversky & Kahneman 1974). Judgment is 
not cast according to rational choice but often according to cognitive biases. Most importantly, humans judge 
according to representativeness (how typical is this to my memory?), availability of instances (do I easily 
recall situations like this?), and adjustment from anchor (what did the last instance look like, even if 
unrelated?). 
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Good reviews on cognitive complexity can be found in Halford et al. (2010) on relational knowledge and 
in Barrett et al. (2007) on the influence of social complexity. Further cognitive limitations are not directly 
related to the primate origin of human beings. Among them we find limitations in attention span, differences 
in bottom-up/top-down understanding processes, time consumption in data interrogation processes, and the 
limitations of the visual sketchpad to 3D space dimension (at best).  

 
2.4. Implications for Interface Design 

The limitations derived from perception and cognition under the influence of task complexity should be 
addressed by an appropriate interface design. The interface should convey meaning by its design. 
Dimensions in data that are connected should be displayed in a connected fashion (e.g. width and height of 
a rectangle for value and trust in value of a variable, cf. Barnett & Wickens 1988) if they need to be 
evaluated as a conjoint variable. Pop-out of comparable dimensions by alignment (i.e. are lengths equal?) 
can be used to identify outliers directly and in parallel. 

Still, in any given visualization we can only use so many dimensions in presenting data. When 
displaying data in a static fashion, the following dimensions can be modified: 2D-Position, size, opacity, color, 
and texture. Here, the separability (Lockhead 1966) of dimensions must be respected (e.g. hue and 
brightness are not separable), otherwise decoding of variables cannot be performed properly. Furthermore, 
one must consider that investigating multiple dimensions of this kind at once is still hard, especially when 
mapping of data is non-canonical.   

According to Tufte & Graves-Morris (1983), the aim should always be to maximize the data-ink ratio, as 
in to present only primary information and to remove redundancy. They show how one can proceed to 
decrease the “lie-factor” in removing unnecessary chart-junk. This approach contradicts some of the findings 
in task-complexity. Redundancy in the input-component does reduce complexity, but only to a certain point. 
Finding the optimum presentation-task-fit is the challenge of the UI designer. Enriched displays that mimic 
the behavior of the underlying system (Pawlack & Vincente 1996) can help in decision-making under 
uncertainty, because they convey more meaning that minimalistic displays of raw data.  

When visualizing dynamic data, additional usable dimensions are movement in space and changes in 
size, opacity, color, and blink. Adding to the complexity of multiple dimension interpretations, dynamic 
visualizations also limit the presentation period of an individual phenomenon. This exposes the presentation 
to further limitations of attention (e.g. attentional blink, color perception in the periphery, resolution difference 
in the fovea, movement sensitivity in the periphery, attention inhibition, etc.) (Lavie et al. 2004, Reeves et al. 
1999, Cadiz et al. 2003, Cadiz et al. 2002). 

When a task requires the analysis of e.g. 17 dimensions, the system should try to reduce to dimensions 
as much as possible. Only four items or dimensions can be investigated visually and be kept in working 
memory (Awh et al. 2007, Cowan 2001, Atkinson et al. 1976). The remaining four dimensions must be 
displayed in a fashion that enables the construction of the 17 dimension mental model from schemas that 
rely only on quaternary relations. This information chunking and compression can lead to generalization 
errors, or blindness on relationships between dimensions that are not displayed together or fall short due to 
segmentation.  

Since knowledge can never simply be transferred, it must be communicated and often not in an 
immediate fashion. This process also underlies individual differences and thus human diversity must be 
considered when displaying complex data. Often engineers design systems that present problems only 
understandable by themselves. They assume what is easy for them, is easy for others (Kruger & Dunning 
1999). This makes it extremely valuable to include end-users early in the design process. 
 
3. Qualitative Survey 
In the cluster of excellence we investigated how methods to reduce complexity and usability methods can be 
used to tackle the inherent problem of complexity. For this purpose we conducted interviews with 
researchers, how they approach complexity and usability and specifically addressed the topic of dimension 
reduction. Most engineers in our research cluster did not have formal training in usability. Often end-users 
are not available for testing. To accommodate for these peculiarities we evaluate usability methods in regard 
to their applicability in a setting like the cluster of excellence. The following subsections elaborate on our 
findings.	
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3.1. Methods to Reduce Complexity 

In order to be able to visualize multidimensional data we can apply methods to simplify data and reduce 
complexity (Holzinger et al. 2012). The following approaches can be used: 

• Dimension reduction: Filtering, statistical methods, folding, network graphics, Andrews curves, 
parallel axes visualizations (Calero Valdez et a. 2011, Calero Valdez et al. 2012, Spears 1999)  

• Pattern detection - Low-pass-filter, Entropy detection (Holzinger et al. 2013, Holzinger et al. 2012, 
Mowshowitz & Dehmer 2012)  

• Interaction methods - Rotation of data (3rd dimension), drill down, search, recommendation, browse, 
tool-tips, device rotation, game-based approaches  

• Natural mapping of visualization and interaction methods (low-high, spatial to spatial, temperature to 
color, intensity to opacity, relatedness as closeness, zoom to pinch, select to tap, drag to move, 
tooltip-placement) 

We found that matching the method to reduce complexity must match both domain knowledge of the 
future user and the available data. If complex mental models must be shaped during the interaction process, 
interrogative methods of interaction are helpful in acquiring a mental model.  

Most applicable in scientific settings (e.g. simulation data presentation) are methods of dimension 
reduction and natural mapping methods. Methods of pattern detection are applicable in knowledge discovery 
tasks (e.g. collaborator finding). Complex interaction methods often require rich knowledge of programming 
and are often considered as a final “retouch” to programs. Therefore, simpler interaction methods are used 
more readily (e.g. search, drill down, fixed 90° rotation). These solutions are often not optimal and should 
therefore be evaluated in a usability context. 
	
  
3.2. Usability Method Evaluation 

We looked at selected usability methods (Courage & Baxter 2005, Holzinger 2005) that can be used in an 
engineering/scientific setting. As most engineers lack formal usability training, expertise is considered a 
negative factor for applicability here. Similar negative impact is found for methods that require multiple target 
users and are time consuming. We evaluate at usability inspection and test methods, as well as tools that 
can be used during the design phase (see Table 1). The required effort in time relates to the amount of 
preparation and expert time needed to conduct the method. Costs mean additional tools or hardware that 
needs to be acquired to adequately perform the method. Utility refers to the amount of possible defects and 
improvements that can be found during the method. User refers to whether or not end users take part in the 
process. Most methods can be applied in iterative design processes, which includes the user’s tasks early in 
the design empirically and during use (Gould and Lewis 1985).	
  
	
  
Table 1.   Overview of Usability Methods and their Evaluation. 

Name Phase Time Effort Cost Effort Utility User Applicability 
Usability Heuristics All Low Low  High No Medium 
Cognitive Walkthrough All Medium Low High Maybe Low 
Scenarios/Use-Cases Concept Low Low High No High 
Paper Prototyping Design Low Low High Yes High 
Clickable Prototyping Design Medium Low Medium Yes Medium 
Participatory Design Design High Low High Yes Low 
Focus Groups Test Medium Low Medium Yes Low 
Interviews Test Medium Low Low Yes Low 
Thinking Aloud Test High Medium High Yes Low 
Web-Based User Tests Test Medium High High Yes Medium 
	
  
4. Example: Logistics Game 

To illustrate the benefits of the presented usability engineering methods we exemplify the successful 
development process of a business simulation game with the learning objective of conveying supply chain, 
material disposition, and quality management techniques. We originated from a System Dynamics model 
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(Forrester 1977) that incorporates supply chain management with quality management aspects and serves 
as a simplification of the complex interrelationships of today’s production networks (Stiller et al. 2014). 

For the design of the game interface, we first created a series of non-functional paper prototypes with 
different spatial layouts and varying information complexity. Through several iterations a visual interface 
evolved that	
   followed the principles of the Gestalt psychology and divided the complexity of the tasks in the 
game in several distinct visual chunks (see Fig. 1, left). Next, a low fidelity functional prototype was realized 
in a spreadsheet application to identify suitable game parameters (e.g., cost functions) with an adequate 
level of task complexity, and to validate the soundness of the game with domain experts (see Fig. 1, center). 
Based on these findings the game was realized as a web application (see Fig. 1, right) and a Web-Based 
User Tests showed that interacting with this learning environment raises the awareness for quality 
management issues and that people learned to successfully handle the complexity of the simulated model of 
a production network (Philipsen et al. 2014a). The final web-based business simulation game was again 
submitted to usability evaluations using the think aloud method and expert interviews. The interface was 
further optimized based on this feedback by harnessing the pop out effect through highlighted Key 
Performance Indicators and task-oriented spatial layouts. A final Web-Based User Tests in conjunction with 
an AB-test compared the original with the refined interface: The participants found the new interface easier 
to use and higher profits and higher product quality was achieved with final iteration of the game’s interface, 
indicating a higher effectiveness and better learning outcomes based on increased usability of the 
application (Philipsen et al. 2014b). 

Besides being a suitable learning environment to facilitate the understanding of the interrelationships of 
modern production networks the environment can further be used to empirically evaluate the influence of 
task and interface difficulty (Mittelstädt et al. in press) and how this complexity can successfully be reduced 
(Brauner et al. 2013). For example, aspects of the simulated production network can be controlled and 
manipulated and the influence of different visualizations in relationship with aspects of user diversity can be 
investigated in relationship with the achieved game performance.	
  
	
  

	
   	
   	
  
Fig. 1.   Development stages of the business simulation game (left paper prototype, center functional 
prototype in a spreadsheet application, right functional web-based application). 

 

5. Discussion 
Applying not only adequate visualizations but also interaction mechanisms is crucial for exploring data. 
Depending on the type of data different approaches are either more feasible or more useful. One must 
carefully evaluate how to include both the user and the data expert in early phases of the system design. 
Integrating user requirements from a use case point of view and their feedback on early prototypes is helpful 
in designing a system that is helpful in decision-making and addresses complexity accordingly. Creating a 
design space of data visualization and interaction patterns will be helpful for further endeavors. Further work 
in this area is required and evaluations are necessary. In particular, applying findings in real-life settings with 
fluctuating motivation, environment and changing goals could lead to drastically different results. 

Beyond an improvement of processes in usability and dimension reduction, individual factors will play an 
increasingly important role in the future of work, as user diversity factors like age (Ziefle & Bay 2005) 
influence how users deal with complexity. Changes in requirements caused by Industry 4.0 (e.g. increased 
flexibility, more diverse tasks, higher order decision making) will stress the importance of good usability and 
ergonomics in scientific and industrial settings. This is specifically true in face of a change in demography, 
changing values and a globally connected world. 
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