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Abstract. Analysing complex phenomena, such as the world we live
in, or complex interactions, also requires methods that are suitable for
considering both the individual aspects of these phenomena and the
resulting overall system. As a method well suited for the consideration
of complex phenomena, we consider agent-based models in this study.
Using two programming languages (Netlogo and Julia) we simulate a
simple bounded-rationality opinion formation model with and without
backfire effect. We analyzed, which of the languages is better for the cre-
ation of agent-based models and found, that both languages have some
advantages for the creation of simulations. While Julia is much faster in
simulating a model, Netlogo has a nice Interface and is more intuitive
to use for non-computer scientists. Thus the choice of the programming
language remains always a trade-off and in future more complex models
should be considered using both programming languages.

Keywords: Agent-based modeling + Simulation - Julia - Netlogo -
Programming languages

1 Introduction

Today, we live in a world, that is more complex than years ago. We are almost
always and everywhere on the mobile Internet, using cloud storage or cloud
computing and Al technologies such as deep learning. Also, when humans inter-
act with each other or with digitized technology we speak of complex systems.
The interaction of humans in such systems, for example in opinion-forming pro-
cesses, leads to consequences that we cannot yet overlook or understand. An
important component of socio-technical complex systems are single individuals
that appear as human-in-the-loop [6]. To look at people, their interactions and
the resulting overall behaviour, we need suitable methods, such as simulations.
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Simulations make it possible to observe the resulting overall system or the result-
ing behaviour by representing individual processes, procedures and behaviour.
In addition, simulations make it possible to identify tipping points that lead to
a different outcome of the overall system.

Agent-based models are a form of simulation. As the name implies, they
always consist of agents. In addition to the agents, the environment in which the
agents are located and with which they interact is also modelled. However, agents
can be designed in different ways, depending on the context to be considered.
For example, agents can be more than just people interacting with each other. If,
for example, traffic jams are to be considered, cars are used as agents, if it is con-
sidered how possible forest fires can be avoided, the agents are trees. The agents
differ not only in their form, but also in several other dimensions. For example,
the agents can be completely or to a lesser extent autonomous. Their interests
and character traits can also be different. For example, they can act selfishly or
in favor of the totality of all agents. They can be outgoing or prefer to remain
separate. Some agents are able to learn from their experiences or observations.
Agents can also be of varying degrees of complexity [8]. Despite the potential
complexity of agents and the possibility to model them in very different ways,
most agent-based models tended to focus on simple, local rules [10]. Further-
more, there is a view that the simulations are mainly randomly implemented to
run on a computer [14].

Various frameworks have been developed for creating agent-based models.
The most established language or program of these is Netlogo [27]. But while
Netlogo was authored by Uri Wilensky in 1999, the spread of the Internet also
resulted in the evolving of different programming languages [6]. Thereby more
languages can be used to create agent-based models. So far, it has not been con-
sidered which language is actually best suited for creating agent-based models.
Therefore, in this study we investigate whether Netlogo or Julia is better suited
for creating agent-based models.

2 Related Work

In this study, using agent-based modelling we consider opinion formation pro-
cesses, thus we look at a complex system. We want to know, whether it is possible
to create an agent-based model with the programming language Netlogo and the
programming language Julia. We further consider, how the two languages differ,
which are the strengths for creating agent-based models of each programming
language and which are the disadvantages. Contentwise, we built a bounded
rationality model to simulate opinion formation.

Therefore, we explain, which aspects lead to complexity, we introduce the
method agent-based modelling and the two programming languages Netlogo and
Julia. Besides, we eplain what is known in theory about opinion formation or
the spread of information.
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2.1 Complexity and How to Model It

When examining opinion-forming processes, we look at a complex system. Such
complex systems can be divided into several ontological levels or interacting
subsystems on a micro- or macro-level [9] We first have to look at how sys-
tems are structurally designed in order to deduce what leads to complexity [6].
Further, complex systems lead to emergent phenomena. These complex systems
and emergent phenomena are difficult to understand, because while it is easy to
observe the individual system components, the resulting overall system cannot
be considered as the sum of its parts. Instead, understanding the system behavior
requires more than understanding the individual parts of the system [6].

Complex vs. Complicated. When we look at complex systems, we do not
necessarily mean complicated systems. A system consisting of components can
initially be both complicated and complex. However, while the term complicated
is always related to human understanding, the term complex is not necessarily
so. If something is complicated, such as a mathematical differential equation,
this means that it is difficult for us humans to understand. To be complex at
the same time, the equation would have to contain many small parts. However,
it is also possible that an equation consists of few parts and is therefore not
complex, but is nevertheless complicated to understand. The two terms therefore
both refer to a system consisting of components, but mean different aspects of
the system and a system which is complicated does not necessarily have to
be complex system and vice versa. A complex system consists of many sub-
components, whose interactions make it difficult to predict the behaviour of the
system. The number of components as well as the complicated interactions of the
parts are considered complex [4,24]. Another characteristic of complex systems,
which is particularly important for our study, is that complex systems are always
dynamic. If a system consists of many parts, but does not show dynamics but
remains static, it is never complex. It is easy to investigate it comprehensively [6].

Emergence. Typically, we look at individual components of a system. From
these subcomponents we then often infer the behavior of the overall system.
However, as Aristotle said, the whole is more than the sum of its parts, and
it is therefore not really correct to observe only the components and conclude
on the overall behavior. However, it is problematic that we can usually observe
and understand individual components or individual behavior, but the overall
behavior is often more difficult to observe. If the interaction of the individual
components results in a system that cannot be described by the sum of the
individual components, we speak of emergence.

With agent-based models we can make emergent behavior visible. We can
model the individual agents and design them according to individual rules that
they follow at the micro level. When the agents interact with each other and
with their environment, unpredictable social patterns, i.e. emergence, occur [3].
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2.2 Agent-Based Modelling

To analyse complex systems we need a suitable approach, such as simulations,
which enable to model the individual parts of a system and thus make the overall
behavior visible. For the simulation of complex systems, agent-based models are
very well suited [11].

Agent-based models always consist of the agents or individuals and the envi-
ronment in which the agents reside [2]. They are neither a representation of
reality, nor fully realistic or even complete. Instead, they show a simplified real-
ity. Nevertheless, agent-based models show behaviour on an individual level close
to reality. By mapping the individual behavior, the behavior of the overall sys-
tem can then be qualitatively observed [20]. Agent-based models are well suited
to replicate data and present the results to non-experts [17]. The use of a method
always requires an evaluation of the method. Evaluating agent-based models is
not easy. In order to evaluate them, independent replicating and comparing with
other model as well as a validation are necessary [20].

The basis of agent-based modeling is the single agent or the individual. This
agent is modelled programmatically as a template. In simulation, due agents
make their own decisions based on how they perceive the environment in which
they are situated. The perceptions of an agent usually determine the behav-
ioral intent of the agent. If the agents are in a social network, as in our model,
they influence their neighbours in the next iteration by their behavioural inten-
tion or the behaviour they show. To determine the probability of organizational
acceptance, we analyze the results of several agent-based simulations.

A simple way to create agent-based models is to use software toolkits devel-
oped for the creation of simulations. These include the Netlogo toolkit considered
in this study. With the use of such toolkits, it is easy to formulate the behavior
of the individual agents. They also usually contain some useful interfaces. The
interfaces allow to visualize the simulation states, interact with the simulation
parameters and export the simulation results. In addition, they usually contain
a batch mode. This is used to run a large number of simulations. Optimization
strategies, such as genetic algorithms, help to find the most suitable parame-
ters [7].

To create agent-based models, Netlogo [27] is the language most commonly
used. Nevertheless, there are some other programming languages that are also
suitable for creating agent-based models and that seem to be partly more intu-
itive, at least for people with programming experience. Therefore, in this study
we compare two programming languages with respect to their suitability for
creating agent-based models.

2.3 Opinion Formation and Bounded Rationality

In describing social phenomena, social scientists traditionally have tended to
employ causal modeling techniques. That is, phenomena are explained by
causally linking different variables. However, when describing phenomena like
opinion formation in groups, repeated interactions between people appear to be
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more influential than static variables [21,22]. Analytical models for the process
of opinion formation therefore focus on group dynamics. They employ agents
whose opinion develops over time as they interact with other agents whose opin-
ion may be similar or different from their own. Computer simulations can be
used to explore how varying different parameters, like the number of agents or
the way agents interact with each other, will affect the distribution of opinions.
Hegselmann and Krause [15] give an overview over how different models mathe-
matically describe the process in varying complexities. One distinction between
models is how opinion is represented. For continuous opinion dynamics, the
assumption is that opinions are one-dimensional in that they can be described
as a number. The smaller the difference between two numbers is, the closer are
the opinions they represent. Another main distinction between the models is
the way in which other agents’ opinions influence one agent’s own opinion, i. e.,
the weight which one agent puts on others’ opinions. In the easiest case, this
weight is modelled as constant, but it might also be modelled as differing, e.g.,
dependent on the susceptibility of each agent or as dependent on the dispar-
ity between two agents’ opinions. This last case can be described by so-called
bounded confidence models which have been proposed by both Hegselmann and
Krause [15] and Nadal [18]. With a bounded confidence model, the agent will
only interact with agents whose opinion is relatively close to their own. To put
it another way, they will only put weight on similar opinions. The threshold for
similarity is defined as the bounds of confidence epsilon which, assuming conti-
nous opinion dynamics, represents the maximum difference between the numbers
ascribed to the opinions where the other’s opinion will still be considered. An
extension to this model of bounded confidence is something we call the backfire
effect. As described by Jager [16], if an agent interacts with another agent whose
opinion is very dissimilar, they will not just ignore that opinion. Instead, they
will shift their opinion to be even further away from the other agents’ dissimilar
opinion. To summarize, for a bounded confidence model with backfire effect, an
interaction between two agents has three possible outcomes: 1. If the difference
between their opinions is smaller than or equal to a certain confidence interval
epsilon, their opinions will converge. 2. If the difference between their opinions
is bigger than or equal to a certain backfire threshold (which might be equal to
epsilon), their opinions will diverge. 3. If epsilon and the backfire threshold are
not equal and the difference between their opinions is between epsilon and the
backfire threshold, their opinions will remain unchanged.

3 Method

Using two different programming languages (Netlogo and Julia language), we
created two identical agent-based models that simulate opinion formation. Since
our primary aim was to find out whether agent-based models could be imple-
mented equally well in the two programming languages, we chose the most basic
model of opinion-forming: bounded rationality.

We built the agent based models using the Atom editor of the Julia pro-
gramming language and version 6.0.4 of the multi-agent programming language
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Netlogo, which was developed by Wilensky [27]. For the following analysis of the
results we used R Markdown.

3.1 First Steps in Agent-Based Models

While we have previously (see Sect.2) explained what agent-based models are
and what they are used for, we following describe how they are structured pro-
grammatically. We start with the most basic components.

An agent-based model usually contains a “setup” and a “go” procedure.
The “setup” procedure defines a kind of basic state at the beginning of the
simulation. The “go” procedure then specifies what happens in a single step of
the simulation.

In Netlogo the “setup” procedure usually looks like in Fig.1. In Netlogo,
procedures always start with “to” and end with “end”. Clear-all makes the world
go back to its initial, empty state. For example, if colors were assigned to the
spots where the agents are located, they will now turn black again. Create-turtles
creates the specified number of turtles, here 100. The turtles usually start at the
origin, i.e. in the middle of patch 0.0. The code in the square brackets after create-
turtles here indicates that the turtles start at a random x and y coordinate. The
square brackets could also be used to create other commands for the agents.
Reset-ticks makes sure that the tick counter starts. Once this code is created,
the simulation starts in the interface by clicking the “Setup” button. In Julia
the setup includes an additional configuration.

Additionally, the agents and their environment are designed before the simu-
lation starts. For example, properties are assigned to the agents and the agents’
environment is designed to resemble the reality of what is being observed. In our
case, the agents do not have specific properties and the environment is also in
its default state.

to setup
clear-all
create-turtles 100 [ setxy random-xcor random-ycor ]
reset-ticks

end

Fig. 1. Setup procedure in Netlogo

3.2 Bounded Rationality Model

Since our primary goal was to compare the two programming languages with
each other, we designed the parameters of the Netlogo model and the Julia
model the identical way. Thus, we increased the comparability of the results of
both models and reduced the complexity as much as possible. In the beginning
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of our bounded rationality model, we defined the maximum number of agents,
the maximum steps of the simulation, the seed, an epsilon as well as whether a
backfire effect takes place or not. The epsilon indicates how different the opinions
of two people can be, so that they still include the other person’s opinion in their
opinion formation. We further defined from the beginning, that each agent has
an (floating) opinion between 0 and 1. In each simulation step, every agent
compares his opinion with the opinion of an other agent. For example, if Anna
compares her opinion with Ralf and the distance between the opinion of Anna
and Ralf is smaller than the defined epsilon, then the two converge in their
opinions. Additionally we defined in the beginning, whether an backfire effect
takes place or not. When the simulation includes the backfire-effect and Ralf’s
opinion deviates more than the epsilon indicates from Anna’s opinion, then the
opinion of Anna distances from the opinion of Ralf.

While in Netlogo the parameters for the simulation runs are determined in
the Behavior Space (see Fig.4), in Julia the initial settings are determined in
the “main” procedure, what can be seen in Fig. 6.

As can be seen in Fig.6 and 4, we set the number of agents 100 to 500
in increments of hundreds (100:100:500). We varied the epsilon between 0.1
and 1 in increments of 0.1 and varied between with backfire-effect and without
(true/false). We set the maximum number of steps to 100.

Go Procedure. Here we compare the “go” procedures, so what happens in
each step of the simulation, of Netlogo and Julia (see Fig.2 and Fig.3). Both
codes look similar. In Netlogo (see Fig. 3), the procedure starts by addressing the
agents (ask turtles). The next line of code says, that the addressed agent gets
the opinion of one random other agent. The subsequent lines of code determine
what happens to the (new) opinion of the agent. If the other agent’s opinion
differs less from his own opinion than the epsilon (see above), the agent assumes
the average opinion of the two opinions. This means that the opinions of the two
agents are added together and divided by two. However, if the opinion of the
other agent is further away than the respective (may vary) epsilon indicates, it
checks whether the backfire effect exists. If the simulation is set to show that the
effect exists, the opinion of the agent is half the distance away from the opinion
of the other agent. At the end, the code indicates that the color of the agents
depends on the opinion. However, this is only for illustration in the interface.
Before the procedure ends, one more “tick” is counted as one time unit.

The “go” procedure in Julia is very similar. One difference is that the proce-
dure is passed a configuration (config) at the beginning. Furthermore, an agent
list with the agents in random order is passed.

3.3 What Do We Compare

To find out whether both programming languages are equally suitable to sim-
ulate our bounded rationality model, we look at several measurable criteria.
These criteria include the outcomes and performance of both models. They fur-
ther include how many lines of code are necessary to program the simulation.
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function go(config, rng, agent_list)
for one_agent in shuffle(rng, agent_list)
idx = rand(rng, 1:config.agent_count)
other_agent = agent_list[idx]
if abs(other_agent.opinion one_agent.opinion) < config.epsilon
one_agent.opinion = (other_agent.opinion + one_agent.opinion) / 2
else
if config.backfire
if one_agent.opinion < other_agent.opinion
one_agent.opinion = one_agent.opinion - abs(other_agent.opinion - one_agent.opinion)/2]

else

one_agent.opinion = one_agent.opinion + abs(other_agent.opinion - one_agent.opinion)/2

if one_agent.opinio 0
one_agent.opinion = @

if one_agent.opinion > 1
one_agent.opinion = 1

agent_list

Fig. 2. Go procedure in Julia

to go
ask turtles [
; get the opinion of one random other turtle

’

let otheropinion [opinion] of one-of other turtles

; 1s opinion in range
ifelse abs ( opinion - otheropinion ) < epsilon [
;then take average opinion
set opinion ((opinion + otheropinion )/ 2)
1
[ ; do we have backfire
if backfire [
; shift away half the distance
ifelse (opinion < otheropinion) [
set opinion opinion - ( abs ( otheropinion - opinion ) / 2 )
1
set opinion opinion + ( abs ( otheropinion - opinion ) / 2 )

]

if opinion < 0 [set opinion 0]
if opinion > 1 [set opinion 1]
]
1
; set color to red range
set color 11 + opinion x 8
1
tick
end

Fig. 3. Go procedure in Netlogo
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Another aspect, that we take into consideration, is, if learning Julia and Netlogo
is equally difficult. For this aspect we consider both computer scientists who are
familiar with other programming languages and a person who has no previous
experience with programming languages. We further compare the explorability
and scalability of both languages.

4 Results

Before we present the results of our bounded rationality model, we reflect on the
extent to which the two languages Julia and Netlogo are suitable for developing
agent-based models and how easy it is to get started with the two languages.

4.1 Getting Started with both Languages

Both Julia and Netlogo are languages that address both researchers and begin-
ners. Netlogo is derived from Logo a language that is aimed at children to lern
programming. The core aim of Netlogo is agent-based modeling and it has several
primites for this purpose. Julia is aimed at scientists that require both perfor-
mance and understandable code. The core aim of Julia is to make code fast,
reusable and easy to understand. This quick introduction by no means covers
the breadth of both of these languages, it aims to provide a high-level overview.

Netlogo. Netlogo as a modelling language for agent-based modeling is very well
suited for beginners wanting to use agent-based modeling. It comes with a rich
variety of example models that users can explore and provides a graphical user
interface and a graphical user interface toolkit to create models that even non-
experts can use. Thus, Netlogo is visually appealing and the interface enables
users to create and test agent-based models and also simplifies the initial creation
of a model. Figure 5 shows the Interface of our simulation. Netlogo also provides
methods for inspecting the model (reporters and visualizations) and for exploring
the impact of model parameters on system behavior (i.e. the behavior space
feature, which allows the user to run any number (usually several hundred) of
simulations). The latter allows turning of the GUI for faster simulations (see
Fig. 4).

Vary variables as follows (note brackets and quotation marks):
["num-turtles" [100 100 500]]

["epsilon" [0.1 0.1 1]]

["backfire" true falsel

Fig. 4. Behavior space in Netlogo
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Netlogo provides immediate visual feedback for the user of an agent-based
model and has easy to understand primitives that allow modelling of agent
behavior, agent interactions, and agent-environment interactions. It provides an
API for extensions, to allow other researchers to complement the functionality
of Netlogo.

num-turtles 100
epsilon 0.1

@ion .
'Off backfire

Opinions

Fig. 5. Interface of our bounded rationality model in Netlogo

Overall, it is very easy to start using Netlogo. However, creating complex
models requires understanding of usage contexts in the language. People coming
to Netlogo with a computer science background may find some of the language
concepts unintuitive and clunky. Several of the authors of this paper have found
Netlogo syntax to be confusing and unnecessary simplistic.

Julia. Julia was initially introduced by a group of computer scientists and math-
ematicians at MIT under the direction of Alan Edelman. Compared to other pro-
gramming languages Julia is considered fast, easy to learn and use and it is open
source. Further advantages of Julia compared to other programming languages
are that it supports parallelization or practical functional programming and can
be easily combined with other programming languages and libraries. Finally,
there is already a group of active users who develop packages (and thereby add
functions to the base language; as of April 6, 2019, there are 1774 registered
packages).

Julia is not a language specifically written for agent-based modeling. Julia
is a general purpose programming language that uses a just-in-time compiler to
generate low level machine code (using LLVM). This means there is no native
support for typical agent-based modeling tasks. There is a library for agent-
based modeling called agents. However, our intention here was to compare the
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programming language itself without the use of a library. It is unclear whether
the library is going to be maintained in the future, whereas Julia’s support is
not likely to expire soon.

This means the user has to design all tools for agent-based modeling them-
selves. However, this is not necessarily very hard. It depends on the complexity
of the model. When this barrier has been overcome, writing a model becomes
easier. The language is very similar to python.

function main()

agent_counts = 100:100:500
epsilons = 0.1:0.1:1
max_steps = [100]
replications = 1:50

my_config = generateBatchConfig(agent_counts,
epsilons,
max_steps,
replications)

startandsave(my_config, "results.csv")

Fig. 6. Main procedure in Julia

4.2 Comparison of Agent-Based Modeling Results of Julia and
Netlogo

Following, we present some exemplarily results of our bounded rationality model.
We also show, if the model created with Netlogo showed the same or different
results as the model created with Julia. Based on these results, we compare the
two considered programming languages and show their advantages and disad-
vantages.

Opinion Change of Agents. Following we consider, how the opinion of the
agents changed during the simulation steps of the bounded rationality model
with and without backfire effect. At this point we do not distinguish between
the two programming languages used.

We use four examples (see Fig.7) to illustrate how the agents change their
opinion during the simulation and how different the opinions look at the end of
the simulation. As can be seen at the top left of Fig. 7, one possible outcome is
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Opinion change of agents over time
4 examples from the data set

epsilon = 0.1 & backfire epsilon = 0.3 & no backfire
1.00 -
0.75-
f2) 0.50-
© 0.25-
o
® 0.00-
©
» epsilon = 0.2 & no backfire
§ 1.00-
c
5 0.75-
O 0.50-
0.25- =
000- 1 1 1 1 1
0 10 20 30
Simulation steps (scale shortend)
500 Agents
Fig. 7. Four exemplarily examples
Julia NetLogo
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Fig. 8. How language, epsilon and backfire influence the opinion count
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Table 1. Comparison of the ten most different settings for both languages

Epsilon | Backfire | agent_count | t-value p-value Degrees of freedom
0.3 FALSE | 200 —2.245263 | 0.0269995 | 97.95147
0.1 TRUE | 200 2.103480 | 0.0386304 | 78.40132
0.4 FALSE | 200 1.989794 | 0.0494162 | 97.43888
0.3 FALSE | 400 —1.606152 | 0.1115634 | 94.89243
0.1 FALSE | 200 1.601283 | 0.1126316 | 95.08476
0.1 TRUE | 100 —1.564258 | 0.1221526 | 71.82311
0.2 FALSE | 200 1.412877 | 0.1609382 | 95.62983
0.5 FALSE | 300 1.416342 | 0.1630015 | 49.00000
0.4 FALSE | 100 1.392850 | 0.1669769 | 93.25748
0.1 TRUE | 300 —1.301375 | 0.1965824 | 86.58427

that the opinions of the agents diverge completely and only two extreme opinions
are formed. After less than 15 simulation steps, every agent has either opinion
0.00 or opinion 1.00. In this example, the epsilon is low and the backfire effect
takes place.

In comparison to this example, in the third example (bottom left) no back-
fire effect takes place. In both examples, the epsilon is 0.1. Comparing the two
examples, it becomes clear that the backfire effect increases the divergence of
opinions. While in the first example two clear opinions quickly establish, in the
third example there are more different opinions for a longer time. After 20 simu-
lation steps, two groups of agents form whose opinions are similar to each other.
Nevertheless, even after 30 simulation steps, these agents still have similar opin-
ions, but not one uniform opinion.

In example 4 (bottom right), also no backfire takes place. Here, the different
opinions converge to a consensus of opinion. After around 20 simulation steps
each agent has the opinion 0.5.

In contrast, in example 2 (top right) no majority opinion develops, but several
groups with the same opinions form. In this example, the epsilon is higher than
in the other examples, which leads the agents to accept opinions that differ more
from their own than in the other examples.

Influence of Programming Language, Epsilon and Backfire on Opinion
Count. After we looked at the opinion formation of the agents itself, we now
consider, whether the epsilon, if the backfire effect takes place or not and the
programming language has an influence on the existence of different opinions. To
look at the influence of the enumerated factors, we consider (see Fig. 8) how many
different opinions exist (y-axis). We further consider the standard deviations of
the opinions (color) to analyse how different the opinions are.

As Fig. 8 shows, if the epsilon is higher than 0.55, practically all agents have
only one opinion (sd =0.0), regardless of whether the backfire effect takes place
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or not and which programming language is used. When the epsilon is lower than
0.55 and the backfire effect takes place, there are two opinions among the agents
that diverge to the two extremes of opinion (sd =0.5). In comparison, when the
epsilon is lower than 0.55 and no backfire effect takes place, the agents have more
different opinions, but the standard deviations of the opinions are lower (less
bright) than in the simulations with backfire effect. The lower the epsilon is, the
higher is the amount of opinions. Comparing the two programming languages,
the amount of different opinions is a bit higher when NetLogo is used, but
the difference is small. Overall, the two programming languages showed almost
the same qualitative results. As Table 1 shows, the quantitative comparison of
both languages showed, that except of three simulation runs, the t.test wasn’t
significant. Thus the languages showed the same results.

4.3 Comparison of Julia and Netlogo After Our Bounded
Rationality Simulation

When comparing both programming languages to create an agent-based model
that simulates the bounded rationality model, Julia proved to be a faster lan-
guage. The whole simulation took only 82.23s, whereas the Netlogo simulation
took 36 min. While the model calculation in Julia is much faster, Netlogo required
less than half the lines of code. To write the bounded rationality model in Julia
97 lines of code were necessary, in Netlogo only 44 lines of code were necessary.

When we consider how difficult it is to learn the two programming languages,
we also have to take into account the previous knowledge of the users. Thus
Netlogo proved to be a language that is easier to learn for people without pro-
gramming skills. In contrast, people with previous programming skills reported,
that it is easier to learn Julia, because it is more similar to other already used
programming languages (for example Python).

An advantageous feature of Netlogo, is that the platform contains an easy
to use, clear and attractive interface. These interface makes it easier to get
started with and learn the language for people without previous programming
experience. The interface offers the user direct feedback, as the simulation runs
visibly if he has written the code correctly and also immediately reports back
error messages if the code is wrong. In addition, the interface allows the user to
try out and change various things in the process.

Also, the fact that there is already a large library of existing agent-based
models in Netlogo, since the language is used exclusively for this method, makes
it easier to use, since existing models can be built upon or users can orient
themselves on them.

In addition to the interface, the Logo programming language, which Netlogo
uses, is also easy to use because there is only a manageable number of structurally
different commands and users can quickly get a feel for which procedures and
functions always need to be set when creating agent-based models.
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5 Discussion

In our study, no language turned out to be the perfect programming language
for creating agent-based models, but the choice of language seems to be a trade-
off between various advantages and disadvantages and also between different
potential users and use cases.

For people who have never used a programming language before and are
not supported by people with previous programming experience, the entrance
to the Netlogo language is certainly easier than to the Julia language. Likewise,
starting with Julia is easier for people with programming experience, because
they already know, how the language is probably organized. It can be assumed
that modelers who are already very familiar with the language they use also
develop more complex simulations than simulation based on simple rules [10].
So less effort in learning a language can certainly increase the complexity of the
models.

One other aspect, that could be taken into account, is the time, that is needed
to run the simulation. Here Julia turned out to be much faster. But, in many
research areas or for many research questions it does not really matter, whether
the language is really fast. One aspect, that is probably more important is,
that very big simulations in Netlogo require high computing power and that the
computers sometimes crash, making it impossible to calculate the model In this
case Julia makes it possible to calculate the simulation without any problems.

Of course, we have only focused on one very simple bounded rationality
model, so that we would have to create further simulations with both languages
to be able to make statements about the generality.

Historically, the basis for analytical opinion dynamics models is given by
psychological research and philosophical theories about social influence (e.g.,
[13,23]). And simulations based on those models have frequently proven to reli-
ably enough reproduce real-life phenomena [22]. However, as Flache et al. [12]
argue, there is a lack of recent empirical studies reassessing and replicating the
assumptions underlying those models, let alone studies examining the size of
epsilon in real-life interactions. In future research, finding a way to link analyti-
cal opinion dynamics models with contemporary empirical psychological findings
would be desirable.

6 Conclusion and Outlook

The results of our research have shown that, although Netlogo has been estab-
lished for a longer time, both programming languages are well-suited to create
agent-based models. Comparing the two languages, we could not find one per-
fect language, but each language is the better choice for creating an agent-based
model in some aspects. The decision for a programming language depends on
different trade-offs (previous experience vs. support; time to create the model
vs. time used for simulation run; nice interface vs. higher functionality). In the
end, however, it does not make sense to decide in favor of one language against
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the other, but to take advantage of both languages and thus use Netlogo for
prototyping and Julia for larger simulations based on these prototypes.

With this study we compared Julia and Netlogo to create a very simple
bounded rationality model. In the future, we would like to extend this compari-
son by using both languages for more complex simulations. We further plan to
pursue with studies, that combine both languages.
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